• Title/Summary/Keyword: Output Matching Network

Search Result 95, Processing Time 0.02 seconds

2.6 GHz GaN-HEMT Power Amplifier MMIC for LTE Small-Cell Applications

  • Lim, Wonseob;Lee, Hwiseob;Kang, Hyunuk;Lee, Wooseok;Lee, Kang-Yoon;Hwang, Keum Cheol;Yang, Youngoo;Park, Cheon-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.339-345
    • /
    • 2016
  • This paper presents a two-stage power amplifier MMIC using a $0.4{\mu}m$ GaN-HEMT process. The two-stage structure provides high gain and compact circuit size using an integrated inter-stage matching network. The size and loss of the inter-stage matching network can be reduced by including bond wires as part of the matching network. The two-stage power amplifier MMIC was fabricated with a chip size of $2.0{\times}1.9mm^2$ and was mounted on a $4{\times}4$ QFN carrier for evaluation. Using a downlink LTE signal with a PAPR of 6.5 dB and a channel bandwidth of 10 MHz for the 2.6 GHz band, the power amplifier MMIC exhibited a gain of 30 dB, a drain efficiency of 32%, and an ACLR of -31.4 dBc at an average output power of 36 dBm. Using two power amplifier MMICs for the carrier and peaking amplifiers, a Doherty power amplifier was designed and implemented. At a 6 dB back-off output power level of 39 dBm, a gain of 24.7 dB and a drain efficiency of 43.5% were achieved.

An Efficient DNA Sequence Compression using Small Sequence Pattern Matching

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.281-287
    • /
    • 2021
  • Bioinformatics is formed with a blend of biology and informatics technologies and it employs the statistical methods and approaches for attending the concerning issues in the domains of nutrition, medical research and towards reviewing the living environment. The ceaseless growth of DNA sequencing technologies has resulted in the production of voluminous genomic data especially the DNA sequences thus calling out for increased storage and bandwidth. As of now, the bioinformatics confronts the major hurdle of management, interpretation and accurately preserving of this hefty information. Compression tends to be a beacon of hope towards resolving the aforementioned issues. Keeping the storage efficiently, a methodology has been recommended which for attending the same. In addition, there is introduction of a competent algorithm that aids in exact matching of small pattern. The DNA representation sequence is then implemented subsequently for determining 2 bases to 6 bases matching with the remaining input sequence. This process involves transforming of DNA sequence into an ASCII symbols in the first level and compress by using LZ77 compression method in the second level and after that form the grid variables with size 3 to hold the 100 characters. In the third level of compression, the compressed output is in the grid variables. Hence, the proposed algorithm S_Pattern DNA gives an average better compression ratio of 93% when compared to the existing compression algorithms for the datasets from the UCI repository.

Split Slant-End Stubs for the Design of Broadband Efficient Power Amplifiers

  • Park, Youngcheol;Kang, Taeggu
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This paper suggests a class-F power amplifier with split open-end stubs to provide a broadband high-efficiency operation. These stubs are designed to have wide bandwidth by splitting wide open-end stubs into narrower stubs connected in shunt in an output matching network for class-F operation. In contrast to conventional wideband class-F designs, which theoretically need a large number of matching lines, this method requires fewer transmission lines, resulting in a compact circuit implementation. In addition, the open-end stubs are designed with slant ends to achieve additional wide bandwidth. To verify the suggested design, a 10-W class-F power amplifier operating at 1.7 GHz was implemented using a commercial GaN transistor. The measurement results showed a peak drain efficiency of 82.1% and 750 MHz of bandwidth for an efficiency higher than 63%. Additionally, the maximum output power was 14.45 W at 1.7 GHz.

Design of a RF power amplifier using distributed network syntheses (분포정수 회로합성을 이용한 RF 전력 증폭기 설계)

  • Kim Nam-Tae;Lee Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.602-607
    • /
    • 2006
  • In this paper, the distributed network synthesis, which is useful to the design of wireless power amplifiers, is proposed, and a RF power amplifier is designed using the technique. The transfer function of distributed matching circuits is derived by Chebyshev approximation, and network element values for a specified topology are given as a function of minimum insertion losses and ripples. As an example, after a power transistor is modeled by load-pull data, the synthesis for distributed matching networks is applied to a power amplifier design, which has the electrical performance of 17dB gain and less IM3 than -43dBc at the 20W output power between 800 to 900MHz frequency range. Experimental results from a fabricated amplifier are shown to approach the design performance in the operating frequency range. The design of impedance matching networks by the transfer function synthesis is a useful method for the design of RF power amplifiers.

  • PDF

Impedance-matching Method Improving the Performance of the SAW Filter (탄성표면파 필터의 성능 개선을 위한 임피던스 정합의 해석적 방법)

  • 이영진;이승희;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.69-75
    • /
    • 2001
  • In this paper, a fast and easy impedance matching method, which could give the impedance matching component for the general 1 or 2-port network was introduced. First, the entire network structure was defined which consists of the network part to be matched and the impedance matching part composed of inductors and capacitors. Next, the transmission matrix and input and output impedances of the entire network from the terminal impedance conditions were calculated, then the exact solutions for the matching components were obtained. To verify the efficiency of this method, this method was applied to the CDMA If band withdrawal weighted SAW transversal filter, and investigated the effects of the impedance matching before and after, through the simulation and experiment. As the result, the performance of a fractional bandwidth of 1.2%, insertion loss of 29 dB, and VSWR of 80 have improved to a factional bandwidth of 1.8%, insertion loss of 9 dB, VSWR of 3 at 85.38 MHz center frequency. The result shows that this impedance matching method could be used in the SAW devices and other types of 1 or 2-port network.

  • PDF

Nonlinear Function Approximation by Fuzzy-neural Interpolating Networks

  • Suh, Il-Hong;Kim, Tae-Won-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1177-1180
    • /
    • 1993
  • In this paper, a fuzzy-neural interpolating network is proposed to efficiently approximate a nonlinear function. Specifically, basis functions are first constructed by Fuzzy Membership Function based Neural Networks (FMFNN). And the fuzzy similarity, which is defined as the degree of matching between actual output value and the output of each basis function, is employed to determine initial weighting of the proposed network. Then the weightings are updated in such a way that square of the error is minimized. To show the capability of function approximation of the proposed fuzzy-neural interpolating network, a numerical example is illustrated.

  • PDF

Optimization of Harmonic Tuning Circuit vary as Drain Voltage of Class F Power Amplifier (Class F 전력 증폭기의 드레인 전압 변화에 따른 고조파 조정 회로의 최적화)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.102-106
    • /
    • 2009
  • This paper presents the design and optimization of output matching network according to envelope for class F power amplifier(PA) which is to apply to envelope elimination and restoration(EER) transmitter. In this paper, to increase the PAE of class F power amplifier which applies to EER transmitter, the varactor diode has been used on output matching network. As envelope changes, it optimizes constitution of harmonic trap that is short circuit in 2nd-harmonic and is open circuit in 3rd-harmonic. When drain voltage changes from 25 V to 30 V, some percentage is improved in the PAE.put the abstract of paper here.

Studies on image recognition of human sperms using a neural network

  • Kitamura, S.;Tanaka, K.;Kurematsu, Y.;Takeshima, M.;Iwahara, H.;Teraguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1135-1139
    • /
    • 1989
  • Three layered neural network was applied for the pattern recognition problem of human spermatozoa in clinical test. The goodness of recognition rate was studied in relation to the number of hidden layer cells and of output layer cells. The proposed method provided better results than conventional template matching technique. Parallel processing of the back propagation learning algorithm was also studied using transputers and its performance was evaluated.

  • PDF

A Unified Framework for Joint Optimal Design of Subchannel Matching and Power Allocation in Multi-hop Relay Network (멀티홉 중계 네트워크에서 최적 부채널 및 전력 할당을 위한 통합적 접근법)

  • Jang, Seung-Hun;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.646-653
    • /
    • 2010
  • This paper provides a unified framework for the joint optimal subchannel and power allocation in multi-hop relay network, where each node in the network has multiple parallel subchannels such as in OFDM or MIMO system. When there are multiple parallel subchannels between nodes, the relay node decides how to match the subchannel at the first hop with the one at the second hop aside from determining the power allocation. Joint optimal design of subchannel matching and power allocation is, in general, known to be very difficult to solve due to the combinatorial nature involved in subchannel matching. Despite this difficulty, we use a simple rearrangement inequality and show that seemingly difficult problems can be efficiently solved. This includes several existing solution methods as special cases. We also provide various design examples to show the effectiveness of the proposed framework.

A Low-Loss On-Chip Transformer Using an Auxiliary Primary Part (APP) for CMOS Power Amplifier Applications

  • Im, Haemin;Park, Changkun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.403-406
    • /
    • 2019
  • We propose a low-loss on-chip transformer using an auxiliary primary part (APP) for an output matching network for fully integrated CMOS power amplifiers. The APP is designed using a fifth metal layer while the primary and secondary parts are designed using a sixth metal layer with a width smaller than that of the primary and secondary parts of the transformer to minimize the substrate loss and the parasitic capacitance between the primary and secondary parts. By adapting the APP in the on-chip transformer, we obtain an improved maximum available gain value without the need for any additional chip area. The feasibility of the proposed APP structure is successfully verified.