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Abstract

In this paper, a fuzzy-neural interpolating network is
proposed to efficiently approximate a nonlinear function.
Specifically, basis functions are first constructed by Fuzzy
Membership Function based Neural Networks (FMFNN).
And the fuzzy similarity, which is defined as the degree of
matching between actual output value and the output of each
basis function, is eraployed to determine initial weighting of
the proposed network. Then the weightings are updated in
such a way that square of the error is minimized. To show
the capability of function approximation of the proposed
fuzzy-neural interpolating network, a numerical example is
illustrated.

1. Introduction

It is well known that the nonlinear function
approximation can be often solved by finding a set of
coefficients for a finite number of fixed nonlinear basis
functions[1]. The Radial Basis Function (RBF) network can
offer approximation capabilities similar to those of the
two-layer neural network, provided that the hidden layer of
the RBF network is fixed appropriately{2]. However, the
performance of the RBF network critically depends upon the
chosen centers of the basis functions[3]. To overcome such
difficulties in choosing centers of RBF, the FMF network was
proposed in [4,5,6], where it was shown that the structure of
the RBF networks could be similar to that of fuzzy logics
when employing the additive combination technique for the
inference[7] and the FMF could play a role of a basis
function. And an simple interpolating network was proposed
to reduce difficulties in determining fuzzy rules and
membership functicns when a large number of input variable
are necessary for the function approximation[4].: However,
since this interpolating network has only one input node to
learn function values, might be difficult to accurately
approximate a complex function .

In this paper, a fuzzy-neural interpolating network is
proposed to efficiently approximate a nonlinear function.
Specifically, basis functions are first constructed by Fuzzy
Membership Function based Neural Networks (FMFNN).

And the fuzzy similarity, which is defined as the degree of

matching between actual output value and the output of each
basis function, is employed to determine how much each FMF
network should contribute to the approximation of a function.
A fuzzy-neural interpolating network is then proposed by
combining the FMF network and the fuzzy similarity.

2. Fuzzy Membership Function based
Neural Network

Consider the following fuzzy relations :

R:Ify i84,,y,is Ay, -, and y,is A, then u is B,
i=12,--4. )

Here, y, for i = 1,2,---,p, is the input variable and u is the
output fuzzy variable fuzzified with a singleton membership
function. A4; and B, for i = 1,2,---4 and j = 1,2,--. p, are
input and output linguistic (fuzzy-set) values, respectively.
And let 1 (v) and p{ (1) be the membership functions for 4,
and B, respectively. If we let U} (1) be a normal singleton
located at u = A, for each 7, and apply the centroidal defuzzifi-
cation technique to P2(x), then u? (1) becomes u#(4). And
thus, regardless of types of inference, the scalar output ¥ can
be obtained by

;050093 -
u= 2, 7R - $2,0,00), )
- i‘”;‘o’?y;u-w)
k=1

where ®,(y%,53,++-33) , ¥° and ®,(y°) are defined as
®,0%,5% 9 Emin{poNlj=1,2,-p},  (3-1)

A
P =005 (3-2)
and
A Oy wh)

YR =0 (3-3)
l0x(v?.yz,- D)

Eq.1 can play a role of approximating a function as the
RBF network can do[4,5,6]. Thus we called Eq.1 as "Fuzzy
Membership Function (FMF) based Neural Network", where
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A, 's are the neural weights to be trained by using the linear
least square method. In applying Eq.1 to a function
approximation, as in [8], we put a nonlinear scalar function g :
R — R given by

g(u) = (1 -exp(-Bu) )/ (1+exp(-B,u)) 4

at the output node together with the scaling factor K to
effectively account for the maximum magnitude of the
function output. In Eq.4, B, is a constant implying the slope
of output node function. For the function approximation, let
Sfy) be a scalar function to be approximated, and let u(y) be
an approximation of f{y). Then u(y) can be represented as

up) = Ke(EL ), ®)

if the FMF network is utilized for the function approximation.
When the error function is given by

E=5(fy)-up)?, , ()

the weight changes A, could be chosen to be proportional to
—dE/d\, ie.,

A =MBiK L () —u()H1 —gzlékjéj(z)]}&h(z)/z,
%

where 1, is learning-rate parameter. Thus the learning rule
for adapting weight can be given as

M =M B K - 1 - NS N2
®

where # is an integer implying the number of learning trials.
The schematic diagram of our FMF network with p inputs
and a scalar output is depicted in Fig.1.

It is remarked that the initial weight values are
known to play important roles of obtaining the global
minimum in most of neural networks[9]. In this respect,
heuristic choice of the initial values considering the fuzzy
rules for the FMF networks can provide better performances
than the random choice of the initial weight values for the
RBF network, since the weights of the FMF network have
clear meanings as locations of the singleton fuzzy
membership functions for the "THEN' parts of the fuzzy rules,
but the weights of the RBF networks have no physical
meanings. It is also remarked that in some real applications,
the number of membership functions and their centers seem to
be well-selected by carefully observing data structures rather
than the arbitrary selection mechanism usually employed in
the RBF network.

It is further remarked that Wand and Mendal [10]
recently proposed the Fuzzy Basis Function (FBF) for
function approximation, which is similar to our FMF network.
However, in their approach, there were no learning trials,
which implies that FBF was not employed as the type of a
neural network. Specifically, two arbitrary sets of initial FMF
were first constructed by using input-output data pairs and
linguistic IF-THEN rules. And then significant FBF's among
initial FBF's were selected based on their error reduction ratio.
Thus, the performance of their algorithm might be critically
determined by initial choices of basis functions, their

membership functions, and the number of basis functions to
be finally fixed, which may require many a trial and error to
achieve satisfactory performances. Compared to their
approach, in our FMF network, membership functions of
THEN part in fuzzy IF-THEN rules are adjusted by the
gradient descent method as usual in the RBF and the Back
Propogation Neural Network. And there is no need to
determine many a initial basis functions as well as the number
of basis function to be finally fixed, owing to the learning
capability of our FMF network. Especially, when a large
number of fuzzy variables are necessary for the function
approximation, the proposed fuzzy-neural interpolating
network can be employed to make fuzzy rules be simple, but
there are no such a scheme in [10]. In such view points, our
approach can be considered as a better solution of
fuzzy-neural fusion rather than the approach in [10].

3. A Fuzzy-Neural Interpolating Network

When comparing the FMF network with the RBF
network, we could observe that the FMF network might be
considered as an effective fusion of the RBF neural network
and fuzzy reasoning technique, since the network effectively
reflect human expert's experiences and has a good learning
capability[4,5,6]. However, one might have difficulties in
determining fuzzy rules and membership functions, when a
large number of input variables are necessary for the function
approximation.

To cope with such difficulties, a -neural
interpolating network is here proposed. To be specific, let
SO y,) be a function to be approximated and be
represented by M representative functions H(y,,, - ,y,,) =
f(ylxyz""xyp.py;,i)a fori=1 2""M where I{i(ylxyzy xyp.l)
can be obtained by assigning a constant value ¥y, to a variable
yp of the function fy,p,, - ,). _ Let H(y,py, -+, ¥,.), for
i=1,2,---,M, be approximated as H;(y,,),, - ‘Jp1) by utxhzmg
M FMF networks. Then for a given input (y,,p,,--3,), if yp

is different from y;, for all i, the output value of fly,y,,--- ¥,)
needs to be estimated by interpolating ;I((yl,)h, < Yp1), for
i=1,2,.- ,M “For this, we employ fuzzy rules which inform
how much y is similar to each y,,, i= 12 - .M. To be
specific, let S, be the fuzzy similarity between y‘,J and yp ;> and

n, be the number of fuzzy rules for S, and let w,: R — [0,1]
for i = 1,2,--, M, and j = 1,2,---.n bethemembershlp
function for the Jth linguistic value of [ = Vo l Also let
¥, be the location of singleton membership function for the jth
linguistic value of S, Then S, can be represented as

S, = Z Y m,)- ©)

Now for a fuzzy-neural interpolation, the sigmoid function
given by

g0 = 1/(1+exp(Br)) (10)

1s used as an output node function of each S,. Since the larger

g(S,) is, the more H(y,, y,, -*,y1) are contributed to finding
values of f{y), it may be reasonable that Ay) can be found by
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fy)=Kel gé(s,) Huyz - yel, amn

where g(e) and §(‘-), respectively, are the scalar functions
defined as in Eq.4 and Eq.10. The schematic diagram of th'e
fuzzy-neural interpolating network is depicted in Fig.2. Itis
remarked that since a, in Eq.9 was given as unity in [4], th.e
result of function approximation was not satisfactory. This
implies that there were no rooms for learning other function
values except only a pre-learned datum.

Note that since only A representative functions are
available, at most M function values can be approximated.
Thus to cover the whole input space, we need to divide the
input space by M subspaces. By choosing the performance
index J, for the i-th subspace B, as

2T ) -fod, 12)
*8

and by applying the gradient descent method to minimize J,
our updating rule for the weiglit Y; inA Eq.9 can be obtained.
Specifically, since é’ (u) = B, g(u)(1-g(u)), the derivative of
the performance index J, with respect to the weight y; can be
obtained as follows;

SE=21 3 () -] )~
i Y€B;

=2 %, () - o)) CKBy2)
{1 2EeE N5, DH O 3,01}
- { B, 2%,0,)) [1- 81,3, )]

Rf,) HOwo ) (13)

Thus, the learning rule for updating weights- Y, of the
fuzzy-neural interpolating network can be given as

ﬁl =% “'Kﬁlﬁmzﬂy(;'p)-;{z(yl.h. 5 Yp-1) )
MaAr m A ~
'{1 _'gz[‘glg(hzl%lnﬂ(yp))Hi(YIsyZi 2 Y1 )])
- Um0, N1~ gl my(, )] L2 @)=,
(14)

where 1, is the learning-rate parameter given as a positive
constant not greater than or equal to unity.

4. A Numerical Example

To show the capability of the function approximation
of the proposed fuzzy-neural interpolating network, a
simulation is performed with a function known as the
Mexican hat function given by

40 sin(r [x2472 /35)
[x24y2 /35

D

which is depicted in Fig.3. The input and output universes of

, forxs0,y#0,

(15)
forx=y=0,

discourse are given as x € [ -120, 120, y € {-120,120] and
fxy) e [-27.298,125.6637]. Assume that 169 input-output
relations are available and these are divided into 13 subspaces.
Then 13 FMF networks are assigned in such a way that each
FMF network learns input-output mapping. The fuzzy rules
for designing the i-th FMF network can be generated by
observing the training data. It is remarked that the whole
input space is divided into 13 subspaces and 13 fuzzy rules are
required for each subspace.

After completely training 13 FMF networks, the
proposed fuzzy-neural interpolating network with the learning
rule in Eq.14 is applied to improve the degree of the function
approximation. To verify the capability of approximation of
our FMF networks incorporating the fuzzy-neural
interpolating network, the approximated function is retrieved
with 49x49 segmented input data. It may be observed from
Fig.4 that our FMF networks incorporating the fuzzy-neural
interpolating network can be used as a function
approximation, but the network could not be completely
reproduce the given function due to insufficient training data.
In general, if the number of subspace is sufficiently large, the
given function is expected to be satisfactorily approximated
by the proposed FMF networks incorporating the fuzzy-neural
interpolating network.

5. Concluding Remarks

It was shown that a fuzzy-neural interpolating network
could be designed by employing both the fuzzy similarity and
the FMF as a basis function. Simulation results showed that
the performance of function approximation was satisfactory
by incorporating the FMF network with the fuzzy-neural
interpolating network. It is remarked that since the structure
of the proposed networks could effectively reflect the expert's
knowledge, the proposed network is expected to show several
desirable performances such as training simplicity, fast
convergency, design simplicity, fast learning speed, and no
computational complexity when retrieving. :
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