• Title/Summary/Keyword: Output Area

Search Result 1,447, Processing Time 0.03 seconds

A Study on the Management Efficiency of 'Da U' Sesame Farms in Yangpyeong County (양평군 다유들깨 농가의 경영 효율성 분석)

  • Piao, Shi-Yong;Kim, Sang-Man;Sun, Yu-Cong;Jin, Xuan-You;Lee, Jin;Lee, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.504-511
    • /
    • 2020
  • This paper studies the operational efficiency of the new sesame variety "da u" farmed by the Rural Development Administration. In the survey area--Gyeonggi-do Province, where sesame cultivation was the most intensive. Thirty farmers were surveyed by rural enterprises in the Yangpyeng area where 'da u' was planted. The efficiency of the operation was analyzed by studying the data of 30 farmers. In order to analyze the operational efficiency of the farmers, this survey used the DEA model for analysis in order to determine the technical efficiency of farmers. The result shows that the DEA technical efficiencies of most farmers are efficient, and only 6 farmers are inefficient. The reason for the inefficiency is the high cost of input factors. To analyze the determinants of efficiency through the Tobit model, reducing the pesticides and general fertilizers led to increased technical efficiency. This is inefficient use of pesticides and general fertilizers relative to the output factor, and efficient methods should reduce the cost issues.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Vulnerability Analysis and Detection Mechanism against Denial of Sleep Attacks in Sensor Network based on IEEE 802.15.4 (IEEE 802.15.4기반 센서 네트워크에서 슬립거부 공격의 취약성 분석 및 탐지 메커니즘)

  • Kim, A-Reum;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.1-14
    • /
    • 2010
  • IEEE 802.15.4[1] has been standardized for the physical layer and MAC layer of LR-PANs(Low Rate-Wireless Personal Area Networks) as a technology for operations with low power on sensor networks. The standardization is applied to the variety of applications in the shortrange wireless communication with limited output and performance, for example wireless sensor or virtual wire, but it includes vulnerabilities for various attacks because of the lack of security researches. In this paper, we analyze the vulnerabilities against the denial of sleep attacks on the MAC layer of IEEE 802.15.4, and propose a detection mechanism against it. In results, we analyzed the possibilities of denial of sleep attacks by the modification of superframe, the modification of CW(Contention Window), the process of channel scan or PAN association, and so on. Moreover, we comprehended that some of these attacks can mount even though the standardized security services such as encryption or authentication are performed. In addition to, we model for denial of sleep attacks by Beacon/Association Request messages, and propose a detection mechanism against them. This detection mechanism utilizes the management table consisting of the interval and node ID of request messages, and signal strength. In simulation results, we can show the effect of attacks, the detection possibility and performance superiorities of proposed mechanism.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Evaluation of The Highway Design Speed Determination Process Using Case Studies (Reclassifying Functions and Terrain Types) (사례분석을 통한 도로설계속도 결정방법론 적용성 평가 (기능 재분류와 지형특성 이용))

  • Sim, Gwan-Bo;Choe, Jae-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.101-112
    • /
    • 2006
  • Currently, highway design speed is determined by considering highway function, area type, and terrain type. Sometime it is pointed out that determining a reasonable design speed which is both efficient and safe is not an easy task and that Practicing engineers often select an unsuitable design speed on purpose, capitalizing on some ambiguous and discretionary expressions in describing the highway design speed. This undesirable Problem is arising mostly due to the fact, that the current geometric design standard fails to include rolling terrain type and can not reflect the whole characteristics of land use patterns adjacent to the design highway route. A recent research was Published considering this problem and it attempted to improve the highway design speed determining process. In this research Project, tn see the effects of this recently developed procedure, a new and reduced design speed was calculated based on the new Procedure and subsequently another highway design route was selected. The travel time. construction cost. and the expected degree of safety associated with the new route were assessed to be compared with the ones with the existing procedure. As a result. it was found that the new procedure was successful in reflecting the localities such as terrain type and area type into better determining highway design speed, eliminating much of highway engineers' discretion when applying engineering judgments. Also the new Procedure is keen to produce a more economical highway project. In other words, despite of producing reduced amount of user benefits accrued, in the new highway route, the construction cost has been cut significantly leading to higher values in B/C. NPV, and IRR. Also EMME-II output, which Provided the link assigned volumes, rendered only a slightly reduced Levels of Service along surrounding links in the study network. This reduction was believed to occur because of lower design speed and it had been expected from the beginning.

MAKING AGRICULTURAL INSURANCE IN INDIA FARMER-FRIENDLY AND CLIMATE RESILIENT

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.11 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • Agricultural risks are exacerbated by a variety of factors ranging from climatevariability and change, frequent natural disasters, uncertainties in yields and prices, weakrural infrastructure, imperfect markets and lack of financial services including limited spanand design of risk mitigation instruments such as credit and insurance. Indian agriculture has little more than half (53%) of its area still rainfed and this makes it highly sensitive to vagaries of climate causing unstable output. Besides adverse climatic factors, there are man-made disasters such as fire, sale of spurious seeds, adulteration of pesticides and fertilizers etc., and all these severely affect farmers through loss in production and farm income, and are beyond the control of farmers. Hence, crop insurance' is considered to be the promising tool to insulate the farmers from risks faced by them and to sustain them in the agri-business. This paper critically evaluates the performance of recent crop insurance scheme viz., Pradhan Mantri Fasal Bhima Yojana (PMFBY) and its comparative performance with earlier agricultural insurance schemes implemented in the country. It is heartening that, the comparative performance of PMFBY with earlier schemes revealed that, the Government has definitely taken a leap forward in covering more number of farmers and bringing more area under crop insurance with the execution of this new scheme and on this front, it deserves the appreciation in fulfilling the objective for bringing more number of farmers under insurance cover. The use of mobile based technology, reduced number of Crop Cutting Experiments (CCEs) and smart CCEs, digitization of land record and linking them to farmers' account for faster assessment/settlement of claims are some of the steps that contributed for effective implementation of this new crop insurance scheme. However, inadequate claim payments, errors in loss/yield assessment, delayed claim payment, no direct linkage between insurance companies and farmers are the major shortcomings of this scheme. This calls for revamping the crop insurance program in India from time to time in tune with the dynamic changes in climatic factors on one hand and to provide a safety-net for farmers to mitigate losses arising from climatic shocks on the other. The future research avenues include: insuring the revenue of the farmer (Price × Yield) as in USA and more and more tenant farmers should be brought under insurance by doling out discounts for group coverage of farmers like in Philippines where 20 per cent discount in premium is given for a group of 5-10 farmers, 30 per cent for a group of 10-20 and 40 per cent for a group of >20 farmers.

Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network (인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발)

  • Kim, Jeonghoon;Hong, Jongouk;Byun, Yoseph;Jung, Euiyoup;Seo, Seokhyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.31-37
    • /
    • 2013
  • In this study installation diameter, interval, area replacement ratio and ground hardness of applicable ground in C.G.S method should be mastered through surrounding ground by conducting modeling. Optimum artificial neural network was selected through the study of the parameter of artificial neural network and prediction model was developed by the relationship with numerical analysis and artificial neural network. As this result, C.G.S pile settlement and ground settlement were found to be equal in terms of diameter, interval, area replacement ratio and ground hardness, presented in a single curve, which means that the behavior pattern of applied ground in C.G.S method was presented as some form, and based on such a result, learning the artificial neural network for 3D behavior was found to be possible. As the study results of artificial neural network internal factor, when using the number of neural in hidden layer 10, momentum constant 0.2 and learning rate 0.2, relationship between input and output was expressed properly. As a result of evaluating the ground behavior of C.G.S method which was applied to using such optimum structure of artificial neural network model, is that determination coefficient in case of C.G.S pile settlement was 0.8737, in case of ground settlement was 0.7339 and in case of ground heaving was 0.7212, sufficient reliability was known.

The Design of Transform and Quantization Hardware for High-Performance HEVC Encoder (고성능 HEVC 부호기를 위한 변환양자화기 하드웨어 설계)

  • Park, Seungyong;Jo, Heungseon;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.327-334
    • /
    • 2016
  • In this paper, we propose a hardware architecture of transform and quantization for high-perfornamce HEVC(High Efficiency VIdeo Coding) encoder. HEVC transform decides the transform mode by comparing RDCost to search for the best mode of them. But, RDCost is computed using the bit-rate and distortion which is computed by transform, quantization, de-quantization, and inverse transform. Due to the many calculations and encoding time, it is hard to process high resolution and high definition image in real-time. This paper proposes the method of transform mode decision by comparing sum of coefficient after transform only. We use BD-PSNR and BD-Bitrate which is performance indicator. Based on the experimental result, We confirmed that the decision of transform mode can process images with no significant change in the image quality. We reduced hardware area by assigning different values at the same output according to the transform mode and overlapping coefficient multiplied as much as possible. Also, we raise performance by implementing sequential pipeline operation. In view of the larger process that we used compared with the process of reference paper, Our design has reduced by half the hardware area and has increased performance 2.3 times.

Evaluating MRV Potentials based on Satellite Image in UN-REDD Opportunity Cost Estimation: A Case Study for Mt. Geum-gang of North Korea (UN-REDD 기회비용 산정에서 위성영상 기반의 MRV 여건평가: 금강산을 사례로)

  • Joo, Seung-Min;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • The credible measurement, reporting and verification (MRV) is among the most critical elements in UN-REDD (United Nations programme on Reducing Emissions from Deforestation and forest Degradation in Developing Countries). This study is intended to explore MRV potential in terms of UN-REDD opportunity cost estimation using satellite image for Mt. Geum-gang of North Korea. A visual interpretation were conducted to evaluate MRV conditions by sub-dividing or decomposing the images with different pixel size into a three types of hierarchical tree structure that helps dealing with spatial variability within each subarea. The permanent record of standard satellite remote sensing system demonstrated its capability of presenting area-wide visual evidences of MRV conditions in Mt. Geum-gang (such as the identification of forested area, degradation trends for forest space, three types of hierarchical land-cover and land use tree structure, carbon density in the landscape). Satellite data could be accepted as legally binding proof when it comes to REDD opportunity cost estimation since several cases exist where remote sensing has been used as legal evidence in ICJ (International Court of Justice) and UN resolution. It doesn't seem very difficult to comply with MRV requirements for UN-REDD opportunity cost calculation due to the probative value of satellite data. It is anticipated that this research output could be used as a valuable reference for Korea-based enterprises exploring REDD project sites and the carbon traders to ensure MRV potentials using satellite image in UN-REDD Opportunity Cost estimation.

Barrier Free Accessibility to Trains for All

  • Rentzsch, Manfred;Seliger, Denis;Meissner, Thomas;Wessner, Claudia
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.143-148
    • /
    • 2008
  • This paper is the output of a collaborative European project concerning the barrier free accessibility for disabled persons to regional and long distance trains in Europe. Disabled people represent around 13% of the population in Europe. This is approximately 63 million people. The range of disabilities includes people with reduced mobility including wheel chair users, viewing and hearing impaired people and other forms of impairment. Improving accessibility aims at contributing to the provision of public transport services to all citizens in an equitable way. The purpose of the project was to analyse and to evaluate the existing solutions at selected European railways for all required modules at the entrance (doors, information and safety solutions), to derive a design concept, to develop a mock-up in meeting the needs of rail travellers with the above mentioned impairments and to test it with user groups. The project also aims at deriving components for the determination of standards. The EUPAX Design Mock-up test was performed to verify the advantages of the layout of the train segment including the different modules such as access area (including the access door, gaps between platform and train as well as boarding aid devices), entrance vestibule, information systems inside and outside the train, emergency facilities, toilet with all conveniences and the additional test arrangements regarding push buttons, steps and emergency equipment. For this purpose a questionnaire was developed for the assessment of the EUPAX segment and the additional test arrangements. With the help of this questionnaire it was possible to execute a quantitative and qualitative evaluation. During three test phases 67 experts and handicapped persons from 6 countries have evaluated the Industrial Design mock-up based on this questionnaire. The test group covered persons from North (Denmark) to the South (Italy) and from the West (Spain) to the Middle of Europe (Germany). This is especially important for the generalization (harmonisation) of the results for all European countries. According to COST 335 the information for people with reduced mobility should be clear, concise, accurate and timely. So that all information can be received from persons, they must be transferred on at least two of the three possible ways (acoustical, visual, tactile), a so called "2-sense-principle". Based on the results ergonomic specifications/ solutions for the ergonomic design of the access area, the acoustic, visual and tactile information and the emergency devices including the emergency communication system were developed, related to the benefiting passenger groups.

  • PDF