누수는 용수공급시스템 내에서 발생할 수 있는 대표적인 비정상상황 중 하나이다. 누수는 관로가 매설된 이후부터 잠재적으로 발생할 수 있으며 발생 직후부터 즉시 경제적 및 수리학적 피해를 입을 수 있기 때문에 이를 적시에 감지하고 탐지하는 것이 중요하다. 하지만 시스템이 지하에 매설되어 있어 이를 빠르게 인지하는 것은 쉽지 않으며 인지한다 하여도 복구하기 위해서는 상대적으로 많은 가용자산이 요구된다. 따라서 다중 누수가 발생할 시 누수규모 및 위치에 따라 복구 우선순위에 대한 우선순위를 선정해야 할 필요성이 있으며 최적의 복구전략이 도출되어 이를 수행할 시 시스템의 탄력성 측면에 있어 유리함을 가질 수 있다. 본 연구에서는 프로그램 기반 모의 누수를 발생시켜 비정상상황 시나리오를 구축하였으며 이에 따라 딥러닝 기반 모델로 누수탐사를 수행하였다. 탐사 결과로 얻어지는 누수위치와 누수량은 이 후 누수복구 우선순위를 위한 요소로써 활용되며 타 요소와 함께 최적의 누수복구 시나리오를 도출하였다.
횡단 전위 배열(cross potential array)과 동일열 전위배열(direct potential array) 자료를 뒷받침하여 다양한 수변 구조물의 누수 경로 예측을 가능하게 하는 배열을 제시하고 이를 D-Lux array 라고 명명하였다. 또한 D-Lux array 자료를 색으로 가시화한 하나의 행렬로 정리하여 D-Lux view라고 제시하고 D-Lux view에서 관찰되는 저 전위차 이상대의 위치로 누수 구역의 위치를 해석하였다. D-Lux view의 보다 직관적인 해석을 위해서 D-Lux array 자료와 동일열 전위 배열 자료를 함께 사용하여 각 지점들 사이의 전위차 자료를 각 지점의 전위값으로 역산하고 이를 이용하여 등전위 분포도를 작성하였다. 등전위 분포도는 그래프나 D-Lux view에서 알 수 없었던 누수의 유입구, 유출구 뿐만 아니라 경로까지 예측 가능하게 하였다. 수조 실험과 수치 해석으로 예비 탐사를 실시한 후 현장 탐사로 콘크리트 보와 필 댐에 대한 적용이 이루어졌다. 그 결과, 콘크리트 보와 필 댐에 대해 누수 경로 탐지가 가능함을 확인하였다.
Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.
This study was carried out to derive optimal design floods by Weibull-3 distribution with the annual maximum series at seven watersheds along Man, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was acknowledged by the tests of Independence, Homogeneity, detection of Outliers. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in Weibull-3 distribution were compared by the rotative mean error and relative absolute error. It has shown that design floods derived by the method of L-moments using Weibull plotting position formula in Weibull-3 distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions in view of relative mean and relative absolute error.
A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.
Lawsonia intracellularis is the pathogenic agent of porcine proliferative enteritis (PPE). The bacterial pathogen infects the intestinal crypt cells which causes hyperplasia of the infected cells and leads to the process of intestinal pathogenesis. PPE includes some clinical maninfestations, including acute hemorrhagic diarrhea with sudden death in growing pigs and porcine intestinal adenomatosis, to a chronic diarrhea with reduced productivity of the infected pigs. The purpose of the present studies were carried out to determine L. intracellularis in livestock transport car of slaughterhouse. Distribution of L. intracellularis in livestock transport car were conducted using real-time polymerase chain reaction (real-time PCR) testing method, total 300 samples. Of 300 samples, 119 (39.7%) were detected as positive to L. intracellularis in livestock transport car. In seasonal analysis, 42 (28.0%) out of 150 samples in spring and summer season. 77 (51.3%) out of 150 sample in autumn and winter season. In regional analysis, 53 (88.3%) out of 60 cars and the detection ratio showed that regional variation in livestock transport car.
At present, the existing virus recognition systems usually use signature approach to detect malicious executable files, but these methods often fail to detect new and invisible malware. At the same time, some methods try to use more general features to detect malware, and achieve some success. Moreover, machine learning-based approaches are applied to detect malware, which depend on features extracted from malicious codes. However, the different distribution of features oftraining and testing datasets also impacts the effectiveness of the detection models. And the generation oflabeled datasets need to spend a significant amount time, which degrades the performance of the learning method. In this paper, we use transfer learning to detect new and previously unseen malware. We first extract the features of Portable Executable (PE) files, then combine transfer learning training model with KNN approachto detect the new and unseen malware. We also evaluate the detection performance of a classifier in terms of precision, recall, F1, and so on. The experimental results demonstrate that proposed method with high detection rates andcan be anticipated to carry out as well in the real-world environment.
Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.
The aim of EIT (electrical impedance tomography) system is to image cross-section conductivity distribution of a human body by means of both generating and sensing electrodes attached on to the surface of the body, where currents are injected and voltages are measured. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. With a limited set of current-to-voltage data, figuring out full structure of the conductivity distribution could be extremely difficult at present time, so it could be worthwhile to extract some necessary partial information of the internal conductivity. We try to extract some key patterns of current-to-voltage data that furnish some core information on the conductivity distribution such s location and size. This overview provides our recent observation on the location search and the size estimation.
This paper proposes an outlier detection model based on machine learning that can diagnose the presence or absence of major engine parts through unsupervised learning analysis of main engine big data of a ship. Engine big data of the ship was collected for more than seven months, and expert knowledge and correlation analysis were performed to select features that are closely related to the operation of the main engine. For unsupervised learning analysis, ensemble model wherein many predictive models are strategically combined to increase the model performance, is used for anomaly detection. As a result, the proposed model successfully detected the anomalous engine status from the normal status. To validate our approach, clustering analysis was conducted to find out the different patterns of anomalies the anomalous point. By examining distribution of each cluster, we could successfully find the patterns of anomalies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.