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ELECTRICAL IMPEDANCE IMAGING
FOR SEARCHING ANOMALIES

OnaiN KwoN, JIN KEUN SE0, EUNG JE WO0O0x,
AND JEONG-ROCK YOON

ABSTRACT. The aim of EIT (electrical impedance tomography)
system is to image cross-sectional conductivity distribution of a
human body by means of both generating and sensing electrodes
attached onto the surface of the body, where currents are injected
and voltages are measured. EIT has been suffered from the se-
vere ill-posedness which is caused by the inherent low sensitivity
of boundary measurements to any changes of internal tissue con-
ductivity values. With a limited set of current-to-voltage data,
figuring out full structure of the conductivity distribution could be
extremely difficult at present time, so it could be worthwhile to
extract some necessary partial information of the internal conduc-
tivity. We try to extract some key patterns of current-to-voltage
data that furnish some core information on the conductivity distri-
bution such as location and size. This overview provides our recent
observation on the location search and the size estimation.

1. Introduction

Electrical impedance imaging system is designed to reconstruct resis-
tivity (or conductivity) image of a subject using injected currents and
voltage measurements. In electrical impedance imaging, a chan of elec-
trodes is attached onto the surface of a conducting body, where different
current patterns are applied and their corresponding voltage potentials
are measured. Imaging the electrical conductivity distribution of an
object by this system has been received considerable attention due to
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its low cost and possible applications in medical imaging, corrosion de-
tection, crack detection, etc. However, static EIT imaging is still far
from clinical applications because of the severe ill-posedness which is
caused by the inherent low sensitivity of boundary measurements to any
changes of internal tissue conductivity values. Moreover, EIT has highly
nonlinear relation between the target {conductivity distribution) and the
current-voltage data. So, EIT has quite different nature from CT (com-
puterized tomography) and MRI (magnetic resonance imaging) which
have linear relation between the target image value and the observed
data obtained by X-ray or NMR (nuclear magnetic resonance} signal.

The electrical impedance imaging system can be modeled by an ellip-
tic partial differential equation. Suppose that an electrically conducting
body, whose conductivity distribution is to be reconstructed, is occu-
pied in a region @ C R"*(n = 2,3). The conductivity, denoted by &,
is assumed to be a symmetric, positive definite matrix which has jump
across an interface between different regions. * Across the interface, the
normal component of the electric field and the tangential component
of the current density are discontinuous. Our goal is to identify this
interface considering the above jump relation carefully.

For simplicity, let us assume o to be a scalar valued function, which
occurs in isotropic conducting media. When we inject a current, denoted
by a function g on 31, into the subject, electric current density J will
be set up within the object satisfying —J - v|sn = g where v denotes
the outward unit normal vector to the boundary. Since J = —oVu
where u is the voltage potential, after normalization, u is governed by
the following Neumann problem

div ((}w) -0 inQ,
Oou

o— = on d?, and / uwds = 0.
Bu an

It 15 well known that, for a given ¢ € H _1/2(6‘9) satisfying an ap-
propriate compatibility condition, the above Neumann problem has a
unique solution in H'(Q). From now on, we denote the solution u of the
Neumann problem by u[o, g] because it is determined uniquely by the
conductivity distribution ¢ and the Neumann data g.

To get better information on the target image o, we may apply several
currents g;, j = 1,---,N and measure the corresponding boundary
voltages f; := u[o, g;]lan. In practice, the number N of possible applied
currents is limited due to the finite number of attached electrodes.
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The inverse problem of reconstructing ¢ is to invert the highly non-
linear map T : C — [L2(69)]Y defined by

T(O’) =f{:= (flaf?:"' :fN)

where C is a set of all possible conductivity o. To search T~(f), it is
necessary to interpret how the change in conductivity affect the current-
to-voltage relation. Also, it should be taken account into inevitable noise
in measurements and modeling errors. Indeed, since the data f always is
distorted by some measurement error, we seek an approximate solution
which is selected out of the set

Clf] .= {o € C:|T(0) — flz2(a0) < € := a given noise level}.

In order that an approximate solution is close to a true solution, the
diameter of the set C[f] should be reasonably small in some appropri-
ately chosen metric. The diameter C[f] is large when small perturba-
tions of data cause large distortions to the solution in a given metric.
What could be an appropriate admissible class C and reasonable met-
ric? Considering all possible conductivity distribution ¢ of the human
body, it is reasonable to assume that the admissible class C is contained
in the set of all positive piecewise C!—functions. As a metric for C, a
metric involving total variation and the standard H(Q2)-norm could be
effective to distinguish discontinuous images. Once a metric is fixed,
the diameter C.[f] depends on the choice of C and applied current pat-
tern g. To reduce the diameter of C,[f], unnecessary functions should be
excluded from the admissible class C using a priori information about
the physical structure of the body so that in a small class C the size of
Ce[f] could be shrunk significantly. Choice of applied currents also plays
an important role on the size of C[f]. For example, highly oscillatory
current-voltage data usually give poor information on the presence of
anomalies lying in deep inside body because most of currents flow near
the boundary.

Let us focus on a simple model such as the case of piecewise constant
conductivity. Suppose that C is the set of o which is of the form

M

o= O'OXQ\U;\JEI D, + Z O XD;
j=1
where M is a natural number, og, ¢; are positive constants and D; are
smooth domains contained in Q, and yp denotes the characteristic fune-
tion of D. We assume that the diameter of C.[f] is reasonably small
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FIGURE 1. EIT schematic diagram.

for appropriately chosen currents, although we do not have any math-
ematical evidence. Then, our question is how to find one out of C[f]
numerically with economical value. Most of reconstruction processes use
iterative schemes which require to solve the forward problem for each
change of the conductivity until the calculated boundary voltages T(o)
are matched to the measured voltages f within a noise level e. In these
methods, reconstruction algorithms require tremendous computational
time and its iteration scheme may fail to converge to an approximate so-
lution without taking a good initial guess. In our knowledge at present,
it is too laborious to develop instant reconstruction algorithm for the
full bulk shape of D;. Instead, it could be worthwhile to extract only
necessary partial information of D; such as location and size. This paper
deals with both the mathematical theory and the numerical algorithm
for these aspects.

2. Tomography

The most common tomography, which is making cross-sectional views
of an object, is the X-ray Computerized Tomography(CT) which uses
multiple X-ray projection images, each from different angle. A pho-
tographic film generated by X-ray projection is an aggregated image
where each pixel’s brightness presents the X-ray absorption ratio across
the section of the abject. CT system collect two-dimensional projections
of a three dimensional body by rotating X-ray source with a detector in
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parallel and opposing direction, pivoting about the slice image of inter-
est. Let us denote by p(x,y) the attenuation function which represents
the CT slice image of interest. X-ray projection of two-dimensional
image p(z,y) taken from an angle € + 7/2 is the one-dimensional func-
tion Xgp(t) which is calculated from the line integral through the line
{zcos® +ysiné =t}

Xop(t) := / plz,y)dl.
{z cos f+ysinf@=t}

The projection map Xy from the density is linear and the reconstruction
formula of the target image p from the known data Xpp(t),0 < 8 <,
is derived by inverse Fourier transform with the identity

FilXoplw) = j " Xpplt)e it

oo poo
— / f p(JL‘, y)e—iw(z cos 0+y sin9)dmdy
—o0J—oo

= Falp)(wcosd,wsinb)

where F7 is the one dimensional Fourier transform and 75 is the two
dimensional Fourier transform. Precisely, the density p can be obtained
explicitly by the formula

o0 27 o0
p(_'L" y) = L / / / Xgp(t)e"‘“”tdt wez’w(w cos B+y Smg)d@dw.
an? fo  Jo -0

Although CT creates excellent spatial resolution using discrete X-ray
projection Xp p,j = 1,---,m, we are reluctant to use it due to the
possible damage of tissue by X-rays.

Another important one in medical diagnostic imaging is Magnetic
Resonance Imaging(MRI) where the distribution of the hydrogen atoms
in the body placed within a large, changing magnetic field is imaged by
measuring the radio-frequency emissions of the molecules in response to
the changing magnetic fields. The human body is primarily composed
of fat and water which have many hydrogen atoms and hydrogen nuclei
have an NMR signal. After demodulating the NMR signal, the signal
can be written by

S(tg,ty,tz) = / p(z,y, z) exp[—iv(2Gyty + yGyty + 2G.t,)]dzdydz,

where S(tz, ty, t;) is the NMR signal expressed in 3-dimensional data
acquisition axes t.,t,,t;, p{z,y, z) is the nuclear spin density, 7y is the
gyromagnetic ratio and Gz, Gy, G are the gradient field strengths.
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Therefore like CT image the density image p(z,y, z) can be obtained by
inverse Fourier transform.

What about EIT? Unlike CT and MRI, EIT does not have such
a nice inversion formula. In CT and MRI, there is a linear relation
between the target density p and data such as X-ray projections or
NMR signals. That is, the data corresponding to p1 + p2 is sum of the
two data corresponding to p;,7 = 1,2. However, EIT does not have such
a nice linearity property because electric current is distorted by global
structure of the conductivity o. Therefore the reconstruction technique
in CT and MRI cannot be applied to EIT.

3. EIT system for experiments

EIT requires a way to inject different patterns of currents and mea-
sure voltages using a set of electrodes attached on the boundary of a
subject. It is more desirable to use separate electrodes for current injec-
tion and voltage measurement in order to avoid the effects of electrode-
skin contact impedance. Therefore, we use a compound electrode which
consists of a small voltage measuring electrode surrounded by a large
current injection electrode separated by a small gap. Each current in-
jection electrode is connected to a current source whose output is 50kHz
sinusoid with variable amplitude. We can safely inject more amount of
current as we increase the frequency. On the other hand, it is more dif-
ficult to handle high-frequency signals due to various stray capacitances
throughout the EIT system and the subject. Therefore, we choose 50kHz
as the optimal operating frequency for our EIT system.

We developed a computer-controlled EIT system including 32 inde-
pendent current sources, two analog multiplexers for the selection of a
pair of voltage measuring electrodes, voltage measuring circuits with a
narrow-band variable-gain ac amplifier and a phase-sensitive demodu-
lator, and a 12-bit A/D converter. After we attach 32 compound elec-
trodes around the boundary of a subject, we can inject different patterns
of current through current injection electrodes. Boundary voltage data
on each voltage measuring electrode is sequentially measured using the
EIT system. The entire circuitry of the EIT system is tuned so that the
performance reaches the overall accuracy of +1-bit from the full scale of
12-bit. This means that the total measurement error is within 0.049%
of full scale. We plan to upgrade the EIT system using 16-bit A/D
converter and improve analog circuitry to further reduce the total mea-
surement error. We constructed two circular phantoms. One is equipped
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FIGURE 2. EIT phantoms : (a) A phantom with 32 elec-
trodes attached, (b) A phantom connected to EIT system
with shielded coaxial cables.

with 16 compound electrodes and the other has 32 compound electrodes
(Figure 2 {a)). We use shielded coaxial cables for the connection between
electrodes and the EIT system to minimize the measurement error due
to stray capacitances and external noise (Figure 2 {(b)). We fill the phan-
tom with electrolyte solution with known conductivity. Anomalies with
different conductivity values and shapes are placed inside the phantom.
Boundary current-voltage data from the phantom is used to reconstruct
the conductivity distribution of the phantom. After we verify the perfor-
mance of the EIT system using phantoms, we plan to develop electrode
applicators for human subjects.

4. Location search and size estimation

We consider an inverse problem for finding the anomaly of discontin-
uous electrical conductivity by one current-voltage observation. Difficul-
ties of this problem are due to its inherent ill-posedness and nonlinearity.
Many authors proposed various reconstruction algorithms, most of which
are based on laborious least square algorithms and Newton-type ‘tera-
tion schemes. In these methods, one has to take a good initial guess a
priori. Without taking a good initial guess, to identify the conductivity
distribution seems to be pessimistic: One needs tremendous computa-
tional costs and time to get a close image to the true solution, since
Newton-type iteration schemes may nnt converge to an approximate so-
lution unless the initial guess is close to the true solution. Evidently,



466 Ohin Kwon, Jin Keun Seo, Eung Je Woo, and Jeong-Rock Yoon

success or failure of Newton-type procedures heavily depend on how one
can take a good initial guess.

In the papers [19, 20], a real time algorithm has been developed to
determine the location and the size of the anomaly. In this real time
method, the location of anomalies is immediately determined from the
pattern of a simple weighted combination of the input current and the
output voltage. And the size estimation is accomplished by simply calcu-
lating the Joule’s energy integral. Combining two algorithms, we could
take a good initial guess for the inverse conductivity problem for piece-
wise constant conductivity distributions. Moreover, both algorithms are
stable and within real time (the combined algorithm takes less than one
second). '

Our model under consideration is an electrically conducting body of
the form

o{z)=1+pxp(z) (1 <p#0<0),
where D may be multiply connected. Then the relationship between
the applied current g across the boundary 9§} and the corresponding
measured voltage potential f := u|an on O is determined by solving
the Neumann problem:

div ((1 + ,u,xp)vu) =0 ing,

(4.1}
@= on 0F, ;andf-uds=0.
Ov an

The inverse problem with one measurement is to determine D from one
pair of data (g, f). For some related results, please refer to 1,4,5,6,7,
8,9, 10, 11, 12, 13, 14, 15, 16, 17].

4.1. Representation formula

The location search algorithm is based on simple aspects of the func-
tion H(-; g, f) which is computed directly from the data g and f,

(4.2)
o®{x —
o) = [ PP p)ds, [ se-nawids, RN,
sn  Ov(y) a0
where @ is the fundamental solution of Laplacian given by
ilog;|31:—y| for n =2,
27
Oz —y) =
-1 1

—— fi = 3.
prap— or n
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To get an inspirational insight, we first investigate how the domain D
is related to the Cauchy data (f, g) by means of the Neumann problem
(4.1). Let us start with a basic identity

u(x) for x € Q,

f AD(z — y)uly)dy = B
Q2 0 for z € R"\ Q,

when the left integration is understood in a distributional sense.

By integrating by parts and using the transmission boundary condi-
tion on D (the tangential component of the electric field £ = —Vu is
continuous across the boundary #D, while its normal component has a
jump with

Ouy Ou_
31/ = (1 -+ M)W on BD,
where u_ = u|p and uy = ulg p), We get

ul(z) for z € €1,
H@9.)+ 4 [ V8@ —y)- Vuly)dy = ]

D 0 for z € R™\ Q.
Then our inverse problem is reduced to determine D from the known
function H(z; g, f).

Reduced inverse problem. Find D so that

4 u [ Vo@-9) Vel =B f), TR\

In this formulation, our search domain D is still complicatedly re-
lated to the observation data H, because Vu in the integrand depends
nonlinearly on D again. One possible way to remove an unknown v has
been proposed in [16]: Using layer potential techniques and the integra-
tion by parts, the left hand side of (4.3) is converted into the following
boundary integral which is determined by only one unknown I and the
known information H(:, g, f} as follows:

p [ vi8@=v)- Vuwy

-1
_ SD{(?f_#H,CB) oH

f 7\ Q
o 5 ap} (x) forzeR"™\Q,
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where Sp and K7, are given by

Spoe) = [ ol n)ot)ds, and Kpow) = [ 225 =Dowas,

For the detailed description of the above formulation, please refer to
[16].

4.2. Current fiow structure

The location search algorithm and the size estimation algorithm are
based on the observation of the structure of the current flow inside a

body.

Figure 3 presents the resulting current flow by injecting current given
by g := € -v. The current flow is refracted across the interface between
two different conductivity and the current seems to flow straight with
the direction €; on the included anomaly. In fact, this phenomena arise
frequently in experiments and simulations. We utilize this phenomena
later to determine the location and the size of the anomaly.

In Figure 3 (a} of a concentric disc case, the solution u to (4.1) is
described by

2psin @ ,
in D,
b - . 2 .
(24 p)psing ur sin 4 in O\ D,

2+p)+ulr/R)E 2+ +pr/R)? p
Then the gradient vector field on D is

26,
(2+ ) +p(r/R)*

Vulp =

In the recent papers [19] and (20}, we presented the following asymp-
totic formudla for the current flow.
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FIGURE 3. Current flows in some conducting regions.
The conductivity of shaded regions is two times greater
than that of the background.

Straight current lemma.

LEMMA 4.1. Let Q be a C? domain in R™ and g := @ - v be given
for a unit vector @ as a Neumann data for (4.1). Suppose D :=
U?i1 D; satisfies that D; = By (z;) with rj <, dist(D;, Dy) > L
for j # k, and dist(D;,8Q) > L for all j = 1,--- , M, where € and
L are fixed positive numbers. Then the gradient vector field of the
solution u for (4.1) on D is approximated by

H, zeD.

na
Vu(z) = )

"The proof of the above lemma is based on the comparison between
the solution u and the following function

where ®(z — y) is the fundamental solution of the Laplacian and the
constant ¢ is chosen so that [, an vds = 0. Then v is the solution to the
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conductivity equation (4.1) with a slightly perturbed Neumann data §.
Using singular integral estimate, it can be shown that

Vu(z) = Vo(z) + O(e?), z € £,
and for k=1,---M,
Vu(x)

2 /oo
2d - (z — z;) N
=N +2Z(|m«~z3|) ( EEPTE ) 2 €D

for n = 2 and similar results can be also obtained for n = 3. For more
details, refer to [19, 20]. The result in Lemma 4.1 is exactly what we
have seen in Figure 3.

4.3. Joule’s energy integral

In the electric circuit theory, it is well-known that the total power
(work done per unit time) Pr of the circuit element I' := (a, b} is given
by

= [V(b) — V{a)] x I,
where V' and I denote the voltage at the point and the current flowing
the cross section of I', respectively. This amount of energy is thus trans-
mitted from the electric field to the atoms in thermal vibration per unit
time.

Generally, the total power Py converted into heat for a domain Q C
R" i given by the following Joule’s energy integral

Py= fﬂ B(z) - J(z) da

where E and J denote the electric field intensity and the current density
vector, respectively.

When the physical situation is described by the conductivity equation
(4.1) for given D and g, we have E = —Vu and J = —oVu, where u is
the solution to (4.1). Therefore we get

PQ,D=/g|vu|2dm=f ug dz.
Q a0l

On the other hand, if there is no included anomaly, that is D = @, then
the total power is given by

PQ,Q,:f |VU0|2d3:=/ Uog dz,
Q a0

where Uy = @ - z.
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Physically, the difference of the powers

(4.4) Pag— Pap = /a (W - wg s

indicates the strength (mixed information of the size and the conduc-
tivity value (g, D)) of the included anomaly. Moreover, the sign of
the above integral reveals whether the included anomaly is conducting
(it > 0) or insulating(p < 0).

Now we calculate the difference of the powers (4.4). Starting from
the identity

0= / wAUy dx + [ ulAUy d,
D MDD

we obtain

8U+ Ou_ _ ou_
/BQ(UO—U)gdS*—/aD (_8.1/—_3!}_) U()dS—}J;/aDwUUdS,

where u_ := u|p and uy := u|g 5. Using Green's identity, we finally
achieve the following Joule’s energy integral formula considering VU =

-

a.

Energy integral formula. The power difference is given by

(4.5) Poo— Pap= / (Up —u)gds = ,u/ Vu - ddz.
a0 D

4.4, Size estimation

Let us begin with upper and lower bound for the size of D:

min{1,1 + p} f (Uy - w)g ds
an
1D

1]
max{1,1 + p} B
: |12} Uan(UO u)g ds

For the proof of the above estimate, please refer to {2, 3, 18]. In partic-
ular, Alessandrini, Rosset, and Seo [3] showed the optimal bound of size
of inclusions for guite general g and o.

In [19], Kwon and Seo developed an monotonicity algorithm for cal-
culating the total size of anomalies. For simplicity, we will assume that
D C Bg(0) C Q, and let v, € H'(£2} be the solution to the following

A
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Neumann boundary value problem for the given current pattern g := d-v
where @ is a fixed unit vector:

div ((1 + pr,,(O})WT) —0 inQ,
(4.6) du,
=g ondfl, and / veds = 0.
v 0

Then Kwon and Seo obtained the following monotonicity lemma.

LEMMA 4.2. There exists a unique r € (0, R) so that

f {u—v)gds =0.
a0

Then using the energy integral (4.5) and Lemma 4.1, we obtain

0= Pop—Paso = [ (u=wlads = == (1, (0)] ~1D]) + O

Hence we obtain the following size estimation using monotonicity algo-
rithm.

Monotonicity algorithm for size estimation. The total size
is approximately estimated by the measure of a ball centered at
the origin

|D| = |B-(0)],
where r € (0, R) is the unique number so that

[ 5-vanas=o
o6t

for the measured voltage potential f corresponding to the applied
current pattern g := & - v.

The above monotonicity algorithm can be improved by means of the
following estimate

- — 4
[ wWo—wigds = 2l + 06,

which is obtained easily by a combination of the energy integral (4.5)
and Lemma 4.1. As a consequence, we have the following energy integral
algorithm.
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Energy integral algorithm for size estimation. The total
size is approximately estimated by a simple energy integral

4 f (Uo — f)gds,
37 on

where f is the measured voltage potential corresponding to the
applied current pattern g := &- v and Uy is the harmonic function
with g as the Neumann data on 0f1.

n
|D| =

The energy integral algorithm, by which we need not solve any direct
problem but calculate the simple integration, is'really a real time algo-
rithm. Moreover it is stable under the observation error contained in
the measured voltage potential f, since we extract the information after
integrating it. Figure 4 shows a numerical test for our energy integral
algorithm for g = 20. The total area of 5 anomalies is given by 0.2827
and our estimation gives the value 0.2642.

4.5, Location search algorithm

Now we present the location search algorithm. We give justifications
for two cases: Either when D is a small ball, or when the conductivity
p is close to zero without geometric restrictions on D. Though our
numerical algorithm works satisfactorily for quite general cases of D

1

o8-

46

04r

02

oF

=02

Tetal size of D

s t " 3 L ' I
-1 -08 06 04 02 ¢ a2 04 08 08 1

FIGURE 4. A numerical example for the size estimation algorithm.
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and g, the theoretical justifications are given for the restricted cases.
Thus we expect these restrictions to be relaxed in the theoretical sense.

In case when the included anomaly is known to be a small ball D =
B,(z), we can apply the straight current lemma (Lemma 4.1). Then the
formulation (4.3) is reduced to

L (‘T — y) a 4 ny 0
4.7) H{xz,g,f) = / dy+0(e*), z € R\ Q,
4 Ao f) = st [ Ry o \
where w, denotes the volume of a unit ball in R™. By the fact that
D = B,(z) is a ball, the mean value theorem for harmonic functions
applied to the formulation (4.7) yields that

pr® (x—z)-d

. — 4 ny 0
H(:v,g,f)—nﬂ Ep +0(e"), =zeR"\Q

Examining the function

~ pwr® (x—z)-@
H(z;v) =
(z30) n+u |z—2z|""’

E;

£y

Possible minimum region of H(z; g, f) |

FiGURE 5. Relations between the location of the anom-
aly and the pattern of H(z;g, f) in the case of u > 0.
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we get an interesting observation: Take two observation regions ¥, and
¥, contained in R3\ Q, given by X1 := a line parallel to @ and X3 =
a plane normal to 3. Next we find two points P; € £;(i = 1,2) so that
H(P;9,f)=0and

H(Py g, f) = { neem H(@ig.f) i u>0,
" maxzex, H(z; g, f) if p <O0.

Finally, we draw the corresponding plane II} (P;) and the corresponding
line IIx( /%) given by

H]_(Pl) = {.’E | a- (SU — P]) = 0}
and [I3(P,) := {z|(z — P,) is parallel to a}.

Then the intersecting point P of II;(P;) N IIa(Pe) is close to the center
of D.

Our algorithm gives a tool to determine one small anomaly, at least
when it is a small perturbation of a ball. Figure 5 illustrates how the
location search method works. Roughly speaking, the width function
W = W(z) of shaded region is proportional to 7.

In case of an arbitrarily shaped domain having small conductivity
lit| << 1, we compare H(z; g, f} with

nwn Jp |z —yl*

Using standard Hélder estimate observing the difference u — Uy, we
obtain the following estimate (see [20] for details)

H(z; g, f) = H(m Up) + O(pl?), zeR*\ Q.

Since the function H (z;Uy) possess the same property that we have
required for the function H(z;v), we get the same conclusion as before.
Now we summarize the location search algorithm for a simply con-

nected domain with constant conductivity and Figure 6 demonstrates
the remarkable achievement of this algorithm.
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Location search algorithm. As an applied current pattern, we
choose g{x) = @ - v(z) for some fixed constant vector @. Take two
observation regions ¥, and X contained in R\ Q, given by

(4.8) ; := a line parallel tod and X3 := a plane-normal tod.

Next we find two points P, € ¥;(i = 1,2) so that H(Py;9,f) =0
and
min H(z; g, ) if >0,

H(P: — J €Lz
(Faig, 1) max H(z;g, ) if p<0.

ceR
Finally, we draw the corresep;nding plane II1 (P} and the corre-
sponding line IIo(P,) given by
L (P) = {z|d- (z - P) =0}
and TIa(P2) :={z|(z — P,) is parallel to a}.
Then the intersecting point P of II; (P) N IIz(P;) is close to the

domain D. For two dimensional case, the same argument holds if
one adjusts X and II1(Py) to be simply lines in R2.

When the anomaly is known to be of form
o(z) == 1+ ulz),

where p > 0 is compactly supported by a simply connected domain
D, we can extend the above location search algorithm to this case. The
research is still in process. And moreover it is more worthwhile extending
our location search algorithm to the case when 1) has many components.
If we apply the oscillatory current pattern supported in a portion of the
outer surface, the current will flow mainly near the surface. Using this
pattern, we can detect the existence of the anomaly near that portion.
This local search algorithm is also in preparation [21].

Before concluding this section we give a comment on the stability of
the location search algorithm. In general, the measured voltage poten-
tial f,, contains the unavoidable observation noise, so that we have to
answer the stability question. Fortunately, our location search algorithm
is totally based on the observation of the pattern of H(z;g, f), we have
the following stability.
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%
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-1 08  -06 04 -0D2 0 02 04 0€ 0.8 1

FIGURE 6. Location detection intersecting the lines
Hl(Pl) and HQ(PQ)‘

REMARK 4.3. For z € R™\ 2, by the definition of H(z;g, fm) and
H(z;g, f) given in (4.2) we obtain

| H(z; 9, fm) — H(z; 9, ) |_U 9%(x ))

{fm — fHu) dsy
(4.9)

< O\l fn = £ ll 2oy

where C is a constant depending only on the distance of x from JSl.
Thus we conclude that our location search algorithm is not sensitive to
the observation noise.

5. Numerical reconstruction

5.1. Reconstruction algorithm

We now proceed with describing the application of Newton’s method
for solving the nonlinear equation

(5.1) F(OD) = f
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for the unknown boundary 8D of the included anomalies, where f :=
u|aq is the measured voltage potential. Here u is the solution to the
conductivity equation (4.1). To solve (5.1) by iterative methods, we
consider the following linearized equation

(5.2) F(OD) + F(6D;h) = f

which we have to solve for h in order to improve an approximate bound-
ary 8D into a new approximation given by 8D = 0D + h. As usual,
Newton’s method consist in iterating this procedure.

The second term F'(8D; h) is expressed explicitly in the framework of
domain derivative, which characterizes the perturbation of the solutions
of a boundary value problem with respect to the variation of domains.
The domain derivative approach has been introduced for various prob-
lems. In particular, Hettlich and Rundell [13] calculated the domain
derivative as the following theorem.

THEOREM 5.1. Let D be a subset of §) of class C2, h € CH{8D;R").
Then the domain derivative F'(9D;h) is expressed by

F(8D;h) = |aq,
where u' solves the following boundary value problem
Av' =0 inDU(Q\D),
with boundary conditions on 02

!
/ w'ds=0 and a—u:O,
a0 v

and boundary conditions on D

uy —ul = —p(h-v) Ou_

o
o’ ol )
(1+u) 5 3; = Divgp ((h . V)Gradapu),

where u_ = u|p, uy = ulg\p, u_ := ¥/|p, ¥} := v[ p, and v denotes
the unit outward normal to 6§} or 3D. Here Divyp and Gradgp denote
the divergence and the gradient on the manifold 8D.

Using the above theorem, we get the following Newton-type iteration
reconstruction scheme.
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Reconstruction strategy

(1) Initial guess: For the initial guess, we use our location search
and the size estimation algorithm.

(2) Forward problem: For given boundary 8D, the boundary
value problem (4.1) for D = D™ to obtain the solution u".

(3) Ewvaluate of F: Then evaluate F(0D") := u™lan.

(4) Check and update: If || F(OD™) — f||12(an) < € for some tol-
erance ¢, stop; otherwise update the boundary as apntl .=
dD™ + k", where the vector field A on D™ is chosen so that
the linearized equation (5.2) is satisfied in the least squares
sense:

FOD™) + F/(OD™ h) ~ f.
Go back to step (2).

5.2. Numerical simulation

In order to reconstruct the anomaly D, we use the previously men-
tioned Newton-type iterative scheme. With this method, selecting a
good initial guess plays an important role. In general, the measured
voltage potential f, on 8 contains an inevitable noise, which makes
fm different from the true voltage potential f on 9§2. Then by the in-
herent ill-posed nature of inverse conductivity problem, we are not able
to distinguish the delicate difference of shape of the anomaly D without
having a priori information of D. That is, if one tries to reconstruct
the shape of D with a blind initial guess, one deserves to consume a
considerable time and to fall in the local minimum dilemma.

Fortunately, our location search and the size estimation algorithm
are not only within real time, but also stable as seen in (4.9), so that
we are able to give a stable initial guess. Having this well-chosen initial
guess, we finally apply a Newton-type iterative scheme to reconstruct
the anomaly D.

For a numerical simulation of our method, we consider the conducting
body Q as the unit disk centered at origin in R?. The applied current is
given by g := &3 - v on 051, that is

g(0) =sind, 6 ¢c[0,2m)
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FIGURE 7. Patterns of H(z;g, fn) on the observation
lines 1 = {(1.5,s) | s € R} and T2 = {(s,—1.5)| s € R}.

and the anomaly D to be found is taken as a kite-shaped domain of
conductivity g = 5, the boundary of which is parametrized as

OD = {(z(0), 2(0)
= (0.5+0.1cos§ 4+ 0.065cos 26, —0.3 4+ 0.15sin ) | 0 < 8 < 2r}.

Since the numerical simulation is not an actual experiment, we need a
direct solver which provides output data. To avoid invoking the inverse
crime in numerical simulations, we must generate the oufput voltage
potential f := u|sn independent of our reconstruction algorithm. In
this paper, we employ the method proposed in {7] to obtain f that has
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nothing to do with our reconstruction algorithm. To reflect the practical
situation, we assume the measured voltage potential f,, contains an ob-
servation error, which is given in our simulations by adding 3% random
noise to f. Moreover, since the voltage potential can be detected only
at the attached finite electrodes in practical situations, we assume that
we have the data of f,,, only at M equidistant points on 082,

(5.3) Yj = (cos %,sin %) forj=1,...,M.
In our simulations we assume that we have attached 40 electrodes on
o, i.e. M = 40.

First, we determine the location of an initial guess via our location
search algorithm(Figure 5 serves an illustration.). Let the observation
lines be given by £ = {(1.5,s)|s € R} and ¥3 = {(s,-1.5}|s €
R}. Observing the function H(x;g, fin), which is obtained by a sim-
ple quadrature rule for (4.2) with data {g(yj),fm(yj)}?il, we obtain
the zero point Py = (1.5, —0.2987) of H(z; g, fm) on X1 and the min-
imum point P, = (0.5286,—1.5} of H(z;g, fm) on X2, noting that p
is positive. Figure 7 exhibits this procedure. Then the intersecting
point P of IT; (P1) NII2(#2) in the location search algorithm is given by
P = (0.5286, —0.2987).

Next, we determine the size of the initial guess by two methods dis-
cussed in section 4.4. Using monotonicity algorithm, there exists the
unique r € [0,1) so that

T(r) := =0,

/ (fm —vr)gds
o0

where v, is the solution to (4.6). Then the size of D is almost same as
that of B,{0);

| D || B(0)]-

In order to solve T'(r) = 0 approximately, we consider 20 points in
[0.025,0.5] with the increment 0.025 and use an elementary quadrature
rule: Find r € [0.025,0.5] such that

M
(54) T(r) = | Y- mlas) = Fru)botu) | =0,

where y; € 082 is given by (5.3).
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Alternatively, using energy integral algorithm, we approximate the size
of D by

2+ p

D= —=
D] 2 Jaq

(g — fm)ads,

since Uylan = ¢ in our setting. This energy integral algorithm is more
efficient than the monotonicity algorithm, because we need not solve
direct problems many times to find r for (5.4). However the estimated
size by the monotonicity algorithm seems to be closer to the size of
the unknown anomaly than the energy integral algorithm, the reason of
which is still under investigation.

Figure 8 shows that the corresponding size of D is the ball By 125(0)
and represents the real shape of D and the remarkably selected initial
guess.

Finally, using the above initial guess we reconstruct the anomaly D
with Newton-type iterative scheme. Restricting the boundary curve 8D
to an admissible class An defined as a periodic parametrization,

N N
Ax = {(ao + Z(an cosnt + ¢, sinnt), by + Z(bn cos nt + dp, sin nt))
n=1 n=1
[ tefo,2n},
where the coeflicients ag, by and a;, b;, ¢; and d; for i =1,..., N are all

real numbers, we update the approximation of the anomaly by recon-
struction strategy. For step (4) in reconstruction strategy, we use the
boundary integral formulation. See [13] for more details. For updating
the approximation of the anomaly, we can also use Levenberg-Marquardt
algorithm as demonstrated in [20].

If one has no @ priori information on D, one has to begin with an
arbitrarily chosen initial guess. Up to now, various methods have been
developed without any a priori information on D. Even though their
methods are working in a certain numerical process, they still have a
large gab from the practical use of the EIT images. In our case, fortu-
nately we obtained a good initial guess in the previous step. Thus with
Byp.125(P) as an initial guess we apply the above Newton-type iterative
scheme. As seen in Figure 9, merely 6-iterations give a remarkable ap-
proximation of D, which is very hard to obtain with a blind initial guess
even allowing much more iterations.
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radius 7 T(r)
0.025 0.411620
0.050 0.385590
0.075 0.311471
0.100 0.200150
0.055389
0.150 0.121019
0.175 0.327338
0.200 0.562052
0.225 0.823650
P=(0.5286,-0.2987) 0.250 1.110668
' 0.275 1.421805
0.300 1.756050
4 0.325 2.113455
0.350 2.504039
0.375 3.016947
0.400 2.694932
-E'J -ul‘s -ﬁjll '-Dl‘ -0z lli az 054 lllﬁ IIJB 1 O '425 2 '407876
0.450 2.245636
0.475 1.938697
0.500 0.683061

Figure 8. Solving (5.4) numerically and drawing the
initial guess combining the estimated size with the previ-
ously determined location. The genuine area of the kite
shaped domain is 0.136. The defect stems from the fact
that the current flow in the kite shaped domain is not
perfectly straight.
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