• Title/Summary/Keyword: Osteoclast proliferation

Search Result 62, Processing Time 0.033 seconds

Icaritin, a Flavonoid Derived from the Herb Epimedium, Promotes Osteogenic Differentiation of MC3T3-E1 Cells

  • Park, Dan-Bi;Lee, Hee Su;Ko, Seong-Hee
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.163-168
    • /
    • 2017
  • Osteoporosis is a metabolic bone disease that is characterized by low bone mass resulting from an increase in bone resorption relative to bone formation. The most current therapies for osteoporosis have focused on inhibiting bone resorption by osteoclasts. The purpose of this study is to develop new anabolic agents for treatment of osteoporosis that have fewer risks compared to conventional therapies. We searched the natural products that were derived from the traditional Asian medicines which have been used for treatment of bone related diseases. Icaritin is a flavonoid glycoside derived from the herb Epimedium which has beneficial effects on bone formation. To determine the effect of icaritin on bone formation, we examined the effect of icaritin on MC3T3-E1 cell proliferation and differentiation. For determining the effects of icaritin on proliferation, we performed the MTT assay using MC3T3-E1 cells. To evaluate whether icaritin could promote the osteogenic differentiation of MC3T3-E1 cells, alkaline phosphatase (ALP) activity and mRNA expressions of Runx2, osteocalcin (OCN), RANKL, and osteoprotegerin (OPG) were determined. Icaritin increased MC3T3-E1 cell proliferation. Icaritin increased the ALP activity of MC3T3-E1 cells on 72 hour culture in osteogenic media. mRNA expression of Runx2 was increased after 24 hour culture with icaritin. mRNA expression of osteocalcin was increased after 72 hour culture with icaritin. In addition, icaritin increased the mRNA expressions of OPG and RANKL. However, icaritin increased the mRNA expression of OPG much more than that of RANKL, and then, it increased the OPG/RANKL ratio. These results suggest that icaritin promotes osteogenic differentiation of osteoblasts and decreases osteoclast formation regulated by osteoblasts.

The Effects of Dex and PDGF-BB on Bony Healing of Calvarial Defect in Rats (골재생 과정에서 혈소판유래성장인자-BB와 덱사메타존의 병용 효과)

  • Lee, Jae-Mok;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.573-584
    • /
    • 2003
  • Bone remodeling results from the combined process of bone resorption and new bone formation which is regulated in part by some of Dexamethasone related proliferation & mineralization of cultured bone cell and polypeptide growth factors such as platelet derived growth factor(PDGF), which has been known to be an important local regulator of bone cell activity and participate in normal bone remodeling. To evaluate the effects of Dex and PDGF on bony healing of calvarial defect in rats, 10 ng/ml PDGF were applied on P group and 10 ng/ml PDGF and $10^7$ M Dex were applied PD group. 4 rats in each group were sacrificed at 7, 14. 21 days after operation respectively, and the tissue blocks were prepared for light microscope with H-E for evaluation of overall healing, with TRAP(tartrate resistant acid phosphatase) for evaluation of osteoclastic activity and with immunohistochemical staining for macrophages. The results were as follows : 1. In all group, healing aspects were progressed from 7 days to 21 days in soft and bony tissue, but complete repair were not observed in bony defect 2. PDGF and control group were showed similar bony healing aspect , but bony healing in combination of PDGF-BB and Dex were observed slower aspect compared to PDGF and control group from early healing times. 3. There were no significant difference on activities of osteoclast and macrophages in bony healing between control and experimental group In conclusion, PDGF were not influenced on bony healing of defect and combination of PDGF-BB and Dex were showed slower healing through early healing times. it was considered that Dex compared to PDGF did influenced on early hone formation factors in healing period

Herbal Extract Prevents Bone Loss in Ovariectomized Rats

  • Kim, Chung-Sook;Ha, Hye-Kyung;Lee, Je-Hyun;Kim, Jin-Sook;Song, Kye-Yong;Park, Sie-Won
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.917-924
    • /
    • 2003
  • This research aims to test a new drug candidate based on a traditional medicinal herb, F1, an herbal extract obtained from Astragalus membranaceus and its main ingredient, 1-monolinolein that may have fewer side effects and less uterine hypertrophy. In vitro experiments, human osteoblast-like cell lines, MG-63 and Saos-2, were analyzed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and an alkaline phosphatase (ALP) assays. Mouse osteoclasts were induced through a calcium-deficient diet and inhibition effects were measured. In vivo experiments were done using ovariectomized (OVX) rats for 9 weeks. At necropsy, uterus weights were measured, trabecular bone area (TBA) of tibia and lumbar vertebra were measured bone histomorphology. In results, cell proliferation and ALP activity in Saos-2 by ether F1 or 1-monolinolein did not increased significantly compared to the control. The F1 inhibited osteoclast development ($IC_{25}=3.37{\times}10^{-5}$mg/mL) less than 17$\beta$-estradiol. The OVX rats administered F1 (2 mg/kg/day and 10 mg/kg/day) showed an increase in TBA of the tibia significantly (136.3${\pm}4.2% and 138.5{\pm}$10.3% of control). In conclusions, the herbal extract, F1 inhibited tibia and lumbar bone loss and did not cause uterine hypertrophy. However, 1-monolinolein, the main ingredient of the herbal extract, did not inhibit bone loss.

Osteoporotic bone phenotype in Mats1/2 double-mutant mice (Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구)

  • Oh, Juhwan;Choi, YunJeong;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

Effects of Scutellaria radix Extract on Osteoblast Differentiation and Osteoclast Formation (황금 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Shin, Jeong-Min;Park, Chan-Kyung;Shin, Eun-Ju;Jo, Tae-Hyung;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • Scutellaria radix (SR) has been utilized as a traditional medicine for a variety of diseases including Rheumatoid arthritis and its major flavonoids - baicalein, baicalin, and wogonin - have been reported to exert beneficial health effects, including anti-bacterial, anti-viral, anti-inflammatory, and free-radical scavenging. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of SR on osteoblast and osteoclast cells. SR extract was prepared using 70% ethanol solvent. Osteoblastic MC3T3-E1 cells and osteoclast precursor Raw 264.7 macrophage cells were utilized. SR extract increased MC3T3-E1 cell proliferation and stimulated alkaline phosphatase activity dose-dependently, 152.0% of the control at concentration $1{\mu}g/mL$. Additionally, SR extract ($1{\mu}g/mL$) stimulated Bone nodule formation activity in MC3T3-E1 cells, approximately 223.3% of the control, 20 days after the exposure. In addition, SR extract significantly reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from Raw 264.7 cells. In conclusion, SR extract stimulates the proliferation and bioactivities of boneforming osteoblasts, and inhibits the activities of bone-resorbing osteoclasts to a certain degree.

Pueraria lobata Ohwi as an Osteoporosis Therapeutics (칡의 부위별 골다공증 치료효과)

  • Kim, Chung-Sook;Ha, Hye-Kyung;Kim, Hye-Jin;Lee, Je-Hyun;Song, Kye-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.710-718
    • /
    • 2002
  • It is reported that Pueraria Radix contains phtoestrogens whereas flower, and bud of Pueraria lobata Ohwi were not known. In the present study, we determined the amount of phytoestrogen in each portion of P. lobata Ohwi and carried out therapeutic effects of osteoporosis. The amounts of genistein, daidzein, and formononetin in Pueraria Radix (PR), Pueraria Flos (PF), and young Pueratia Folium (PL) were quantitated using a HPLC system. Proliferation of osteoblast and growth inhibitory effect on osteoclast were measured in order to screen their effects on osteoporosis. Proliferation of osteoblast-like cells (Saos-2) was analyzed by both MTT methods and alkaline phosphatase (ALP) assays. Growth inhibitory effect on osteoclast was also detected as Tartrate resistant acid phosphatase (TRAP) assay. Ovariectomized rat as an in vivo animal model was selected and administrations of PR were 1 g/kg/day (PR-1) and 5 g/kg/day (PR-5) for 9 weeks, respectively. Trabecular bone areas (TBAs) of tibia and lumbar were analyzed usibg histomorphological methods. Results show that PR contains the highest level of daidzein ($10435{\pm}2143\;mg/kg$ of dried herb) and stimulated ALP activity, approximately 160% of the control. Growth inhibitory effect on osteoclast by both PR and daidzein were almost identical with control although $IC_{50}$ of genistein was $5.81{\times}10^{-7}$ M. Increases in body weight of OVX rats were suppressed by administration of PR but wet weights of uterus in PR-5 group were increased (p<0.05). Plasma ALP and HDL-cholesterol levels were decreased following ages (p<0.01), and LDL-cholesterol level was also decreased in PR-5 group at 20 week of age (p<0.01). TBAs of tibia and lumbar in PR-1 and PR-5 groups were higher than those of the control although the values were less than those of the sham group (each p<0.01) In conclusion, administrations of PR prevented loss of TBAs of tibia and lumber in OVX rats, while PL and PF did not (p<0.01).

STUDY ON THE REGULATION OF OSTEOCLAST AND T CELL ACTIVATION VIA CELL MEMBRANE PROTEINS OF TNF FAMILY, CD137 LIGAND AND RANK LIGAND (TNF계 CD137L 및 RANKL의 파골세포와 T 세포에 대한 활성조절)

  • Hong, Sung-Joon;Park, Jae-Hong;Lee, Hyeon-Woo;Lee, Keung-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.597-606
    • /
    • 2008
  • Resorption of alveolar bone in periodontitis is due to excessive differentiation and activation of osteoclasts. Bacterial antigens causing periodontitis activates CD4 T cells, which leads to expressing RANK ligand (RANKL) on CD4 T cells. RANKL binds RANK on preosteoclasts or osteoclasts, and enhances the differentiation preosteoclasts into osteoclasts and the activation of mature osteoclasts. CD137, one of TNF receptor (TNFR) family, expressed on activated T cells binds with CD137 ligand (CD137L) on antigen presenting cells. Cross-linking of CD137 by CD137L acts as T cell co-stimulatory signals and, therefore, enhances the activation of T cell. In this study, I elucidated the biological responses of CD137L on (pre)osteoclasts and RANKL on T cells in the context of in vivo interaction between T cells and osteoclasts. RAW264.7, murine monocytic cells, constitutively express CD137L. Ligation of CD137L with anti-CD137L mAb inhibited RANKL-induced osteoclast formation in a dosedependent manner. Bone marrow cells are expressed CD137L by the treatment with M-CSF. Cross-linking of CD137L abolished M-CSF/ RANKL-evoked the formation of multi-nucleated osteoclasts. Both mouse CD4 and CD8 T cells are expressed RANKL following their activation. Ligation of RANKL with OPG, the decoy receptor for RANKL, inhibited both CD4 and CD8 T cell proliferation. These effects were attributed to RANKL-induced apoptosis. These data indicate that CD137L and RANKL on osteoclasts and T cells, respectively provide them with inhibitory signal.

  • PDF

Effects of Estrogen and Progesterone on the Proliferation and Activity of Osteoblastic cells Abstract (에스트로젠과 프로게스테론이 골모세포의 증식과 활성에 미치는 영향)

  • Ha, Kook-Bong;Kim, Se-Won;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.237-248
    • /
    • 2001
  • Biomechanical reactions of tooth movement are the combination of bone formation and resorption, in which many paracrine factors are involved. The sex hormone is one of the paracrine factors and the sex hormonal level of an adult female vanes according to the body condition, e.g. mensturation, pregnancy, postmenopause, etc. Although the exact mechanism is not clarified yet, estrogen and progesterone are known to regulate the function of osteoblast. Again osteoblast is reported to affect the function of osteoclast. The purpose of this study is to determine the influence of the female sex hormone, estrogen and progesterone, on the cell proliferation and activity of HOS and ROS17/2.8 cell line. The observed results were as follows. 1. Estrogen inhibited HOS cell proliferation and promoted ROS17/2.8 cell proliferation. 2. Estrogen increased the activity of alkaline phosphatase of HOS cell and reduced the activity of alkaline phosphatase of ROS17/2.8 cell. 3. Progesterone inhibited the proliferation of HOS and ROS17/2.8 cell, but had no influence on the activity of alkaline phosphatase. 4. Estrogen and progeterone did not have any particular effects on the activity of super oxide, nitric oxide and gelatinase of HOS and ROS17/2.8 cell.

  • PDF

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effects of a Mixture of Cynanchi Wilfordii Radix and Humuli Lupuli Flos Extract on Estrogenic Activities and Anti-Osteoclastogenesis (백수오(白首烏)와 비주화(啤酒花) 복합물의 에스트로겐 활성과 파골세포 분화 억제효과)

  • Park, Dongjun;Lee, Hong Gu;Min, Kyoungin;Park, Hyoungkook;Jin, Mu Hyun;Cho, Ho Song
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Objectives : This study aimed to investigate the synergistic effect of combining Cynanchi Wilfordii Radix extract with Humuli Lupuli Flos extract on estrogenic and anti-osteoclastogenic activity. Methods : Estrogenic effect of a mixture of Cynanchi Wilfordii Radix extract and Humuli Lupuli Flos extract (CWHL), Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin (an active ingredient of Cynanchi wilfordii Radix extract) and 8-prenylnaringenin (an active ingredient of Humuli Lupuli Flos extract) were examined by proliferation E-screen assay and expression of estrogen inducible gene, pS2 via Real Time-PCR (RT-PCR) in MCF-7 estrogen responsive cells. And their estrogenic activities were investigated how to modulate Estrogen receptor 𝛽 by binding affinity assay. Inhibitory effect of CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin on RANKL-induced osteoclast differentiation were tested by TRAP (Tartrate-resistant acid phosphatase) staining in osteoclastogenic RAW 264.7 cells. Results : CWHL, Humuli Lupuli Flos extract and 8-prenylnaringenin accelerated the proliferation of MCF-7 and the expression of pS2 in MCF-7. CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin bind to estrogen receptor 𝛽. CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin inhibited RANKL-induced osteoclastogenesis in osteoclastogenic RAW 264.7. CWHL is more effective for all markers than Cynanchi Wilfordii Radix extract or Humuli Lupuli Flos extract alone. Conclusions : CWHL may a potential therapeutic agent for menopause and osteoporosis as a natural food resource. CWHL as a natural food source has therapeutic potential in cases of menopause and osteoporosis.