• Title/Summary/Keyword: Organometallic

Search Result 114, Processing Time 0.033 seconds

Property of hfac(hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene) as a Liquid Precursor for Chemical Vapor Deposition of Copper Films (액상 구리 전구체 hfac (hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene)의 특성 평가)

  • Lee, Si-U;Gang, Sang-U;Han, Sang-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1148-1152
    • /
    • 1999
  • An organometallic precursor, hfac(hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl- 1-butene) was synthesized, evaluated and compared with other precursors for metal organic chemical vapor deposition of copper thin films. It was found that at $40^{\circ}C$, the vapor pressure was an order of magnitude higher (about 3 torr) than (hfac) Cu vinyltrimethylsilane (VTMS) and films could be deposited at the substrate temperature of 100-$280^{\circ}C$ with deposition rate substantially higher. The copper films contained no detectable impurities as measured by Auger electron spectroscopy and had a resistivity of about 2.0$\mu\Omega$-cm in the deposition temperature range of 150 to $250^{\circ}C$. From the thermal analysis, (hfac)Cu(I)(DMB) is believed to be quite stable and no appreciable amount of precipitation was observed at $65^{\circ}C$ heating for more than a month.

  • PDF

Polymerization of L-lactide Using Organometallic Aluminium Compound Supported inside Nanopores of Silica (실리카 나노기공내 담지된 알루미늄계 유기금속화합물을 이용한 L-lactide 중합)

  • Yim, Jin-Heong;Ko, Young Soo
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.600-605
    • /
    • 2013
  • In this study, the bulk polymerizations of L-lactide were carried out with triethylaluminium (TEAL), which was supported inside of the nanopore of silica. The feed amount of TEAL in the feed, the immobilization time and temperature were changed to observe the effect of immobilization condition on the polymerization performance with the silica- supported TEAL. As the feed amount of TEAL increased, the conversion of polymerization increased. The highest molecular weight (MW) was achieved at 8 mmol/g-silica of TEAL. Hexane and toluene as solvents were employed to investigate the effect of temperature on the immobilization. Hexane showed better efficiency of immobilization TEAL and the immobilization temperature at $50^{\circ}C$ showed the highest conversion and MW.

Electronic Structure and Chemical Bonding of La7Os4C9 (La7Os4C9의 전자구조와 화학결합)

  • Kang, Dae-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.266-271
    • /
    • 2009
  • In the recently synthesized rare earth transition metal carbide $La_7O_{s4}C_9$ one finds one-dimensional organometallic $[O_{s4}C_9]^{21-}$ polymers embedded in a $La^{3+}$ ionic matrix. The electronic structure of the polymeric $[O_{s4}C_9]^{21-}$ chain was investigated by density of states (DOS) and crystal orbital overlap population (COOP), using the extended Huckel algorithm. A fragment molecular orbital analysis is used to study the bonding characteristics of the $C_2$ units in $La_7O_{s4}C_9$ containing $C_2$ units and single C atoms as well. The title compound contains partially filled Os and carbon bands leading to metallic conductivity. As the observed distances already indicated, the calculations show extensive Os-C interactions. The C-C bond distance in the diatomic $C_2$ units ($d_{C-C}$=131 pm) in the solid is significantly increased relative to $${C_2}^{2-}$$ or acetylene, because antibonding $1{\pi}_g$ orbitals are partially filled by the Os-$C_2(1\;{\pi}_g)$ bonding contribution found at and below the Fermi level.

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Bulk Polymerization of L-lactide Using Aluminium Organometallic Compound Supported on Functionalized Silica (표면 기능화된 실리카에 담지된 Al 유기금속화합물을 이용한 L-lactide 벌크중합 특성 연구)

  • Yoo, Ji Yun;Ko, Young Soo
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.693-698
    • /
    • 2012
  • In this study aluminum isopropyl oxide ($Al(O-i-Pr)_3$) was supported on the amine-functionalized surface of silica to synthesize high molecular weight (MW) polylactide (PLA), and it was tested for PLA polymerization behaviors. A silica was funtionalized with silane compound having amine groups, then in-situ treated with $Al(O-i-Pr)_3$. $Al(O-i-Pr)_3$ attached to amine group on silica showed activity only in the presence of MAO (methyl aluminoxane). At the polymerization temperature of $115^{\circ}C$, the conversion and the MW of PLA were increased as the amount of silane was increased. At the polymerization temperature of $130^{\circ}C$, the conversion was decreased while the MW was increased drastically and reached to MW 44000 g/mol when the amine concentration was 3.0 mmol/g. A bimodal type GPC curve was shown at the polymerization temperature of $115^{\circ}C$. As the amount of amine group increased, the peaks of GPC curve were merged. At the polymerization of $130^{\circ}C$, a unimodal GPC curve was shown. $Al(O-i-Pr)_3$ supported on amine-functionalized silica was able to produce higher MW PLA with enhanced activity compared to homogeneous $Al(O-i-Pr)_3$.

Synthesis and Structural Characterization of Main Group 15 Organometallics R3M and R(Ph)2P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3)

  • Lee, Eun-Ji;Hong, Jin-Seok;Kim, Tae-Jeong;Kang, Young-Jin;Han, Eun-Me;Lee, Jae-Jung;Song, Ki-Hyung;Kim, Dong-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1946-1952
    • /
    • 2005
  • New group 15 organometallic compounds, M$(phenanthrenyl)_3$ (M = P (1), Sb (2), Bi (3)) have been prepared from the reactions of 9-phenanthrenyllithium with $MCl_3$. A reaction of 9-(diphenylphosphino)phenanthrene with 2,6-diisopropylphenyl azide led to the formation of (phenanthrenyl)${(Ph)}_2P$=N-(2,6-$^iPr_2C_6H_3$) (4). The crystal structures of 2 and 4 have been determined by single-crystal X-ray diffractions, both of which crystallize with two independent molecules in the asymmetric unit. Compound 2 shows a trigonal pyramidal geometry around the Sb atom with three phenanthrenyl groups being located in a screw-like fashion with an approximately $C_3$ symmetry. A significant amount of CH- -$\pi$ interaction exists between two independent molecules of 4. The phosphorus center possesses a distorted tetrahedral environment with P-N bond lengths of 1.557(3)$\AA$ (P(1) N) and 1.532(3)$\AA$ (P(2)-N), respectively, which are short enough to support a double bond character. One of the most intriguing structural features of 4 is an unusually diminished bond angle of C-N-P, attributable to the hydrogen bonding of N(1)-H(5A) [ca. 2.49$\AA$ between two adjacent molecules in crystal packing. The compounds 1-3 show purple emission both in solution and as films at room temperature with emission maxima ($\lambda_{max}$) at 349, 366, and 386 nm, respectively, attributable to the ligand centered $\pi$ $\rightarrow$ $\pi^\ast$ transition in phenanthrene contributed by the lone pair electrons of the Gp 15 elements. Yet the nature of luminescence observed with 4 differs in that it originates from $\pi$ (diisopropylbenzene)-$\pi^\ast$ (phenanthrene) transitions with the $\rho\pi$contribution from the nitrogen atom. The emission maximum of 4 is red-shifted ranging 350-450 nm due to the internal charge transfer from the phenanthrenyl ring to the N-arylamine group as deduced from the ab initio calculations.

Hyperaccumulation mechanism in plants and the effects of roots on rhizosphere soil chemistry - A critical review (고축적식물의 중금속 흡수기작과 뿌리에 의한 근권 토양의 화학변화 - 총설)

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.280-291
    • /
    • 2007
  • Much research has been conducted in the field of phytoremediation since the discovery of the range of plants known as hyperaccumulators. Research has focused simultaneously on elucidating the mechanism of metal(loid) accumulation and development of practical techniques to enhance accumulation efficiency. To date, it is generally understood that there are five specific mechanisms employed by hyperaccumulating plant species that are either not or under utilized by non-hyperaccumulators. These include 1) enhanced metal(loid)s uptake through the root cell, 2) enhanced translocation in plant tissue, 3) detoxification and sequestration, 4) enhanced metal availability in soil:root interface, and 5) active root foraging toward metal(loid) enriched soils. Among these mechanisms, understanding of the plant-root effect on metal(loid) dynamics and subsequent plant uptake is vital to overcome the inherit limitation of phytoremediation caused by low metal(loid) solubility in soils. Plant roots can influence the soil chemistry in the rhizosphere through changes in pH and exudation of organic compounds such as low-molecular-weight organic acids (LMWOAs) which consequently change metal(loid) solubility. The decrease in soil pH by plant release of $H^+$ results in increased metal solubility. Elevated levels of organic compounds in response to high metal soil concentrations by plant exudation may also increases metal concentration in soil solution through formation of organometallic complexes.

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.263-272
    • /
    • 2011
  • Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.