DOI QR코드

DOI QR Code

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4

프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성

  • Lee, Hye-In (Department of Engineering Chemistry, Chungbuk National University) ;
  • Kang, Kuk-Hyoun (Department of Engineering Chemistry, Chungbuk National University) ;
  • Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
  • 이혜인 (충북대학교 공과대학 공업화학과) ;
  • 강국현 (충북대학교 공과대학 공업화학과) ;
  • 이동규 (충북대학교 공과대학 공업화학과)
  • Received : 2016.02.23
  • Accepted : 2016.03.15
  • Published : 2016.03.30

Abstract

The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

프러시안 블루 유사체(Prussian Blue Analogue : PBA)는 3차원 구조와 기공을 갖는 금속-유기골격체이며, 유기 리간드의 종류에 따라 다양한 구조를 갖는다. PBA는 바이오센서, 광학, 촉매, 수소 저장 장치 등의 분야에서 주목 받고 있으며 화학적 안정성을 가진 환경 친화적인 물질이다. 또한 다양한 크기의 미세기공을 조정할 수 있어 흡착분야에서 많이 활용되고 있다. 본 연구는 수열합성법을 이용하여 금속유기골격체인 $Mn_3[Fe(CN)_6]_2$를 합성하였다. 전구체로 $K_4[Fe(CN)_6]$$MnCl_2$를 사용하였고, 합성된 물질은 소성하여 망간철산화물을 생성하였다. 실험 변수로 전구용액의 pH, 전구체의 몰농도, 반응시간을 조절하여 입자의 크기와 형태에 대한 영향을 확인하였다. 합성된 다공체는 XRD, SEM, FT-IR, UV-Vis, TG/DTA에 의해 분석하였고, 여러 염료에 대한 흡착 특성을 평가하였다.

Keywords

References

  1. Lin H., Ping Z., Qianwang C., Jiyang M., "Prussian Blue Analogue $Mn_3Co(CN)_6_2.nH_2O$ porous nanocubes :large-scale synthesis and their $CO_2$ storage properties", Dalton. T., 40, 5557-5562 (2011). https://doi.org/10.1039/c1dt10134j
  2. Yaghi M., Michael O., Nathan W., Hee Chae K., "Reticular synthesis and the design of new materials", Cah. Rev. The., 423, 705-714 (2003).
  3. Sittichai N., Jeffrey T., Christopher M., Bradley B., "Adsorption Properties of Hydrogen and Carbon Dioxide in Prussian Blue Analogues $M_3Co(CN)_6_2$, M = Co, Zn", J. Phys. Chem. C., 111, 1055-1060 (2007). https://doi.org/10.1021/jp065845x
  4. Yaghi O., Hai Lian L., Eddaoudi M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
  5. Robson R., Hoskins B., "Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments", J. Am. Chem. Soc., 111, 5962-5964 (1989). https://doi.org/10.1021/ja00197a079
  6. Stephen C., Samuel L., Jonathan C., Guy O., Ian W., "A Chemically Functionalizable Nanoporous Material [$Cu_3(TMA)_2(H_2O)_3]_n$", Science, 283, 1148-1150 (1999). https://doi.org/10.1126/science.283.5405.1148
  7. Steven C., Jeffrey R., "Hydrogen Storage in the Dehydrated Prussian Blue Analogues $M_3[Co(CN)_6]_2$ (M = Mn, Fe, Co, Ni, Cu, Zn)", J. Am. Chem. Soc., 127, 6506-6507 (2005). https://doi.org/10.1021/ja051168t
  8. Gearard fea R., Christian S., Franck M., "Crystallized Frameworks with Giant Pores: Are There Limits to the Possible?", Accounts. Chem. Res., 38, 217-225 (2005). https://doi.org/10.1021/ar040163i
  9. Takashi U., Masaaki O., Susumu K., "Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers", Inorg. Chem., 543, 7339-7345 (2004).
  10. Ming H., Nagy L., Torad K., Ya Dong C., Kevin C., Yusuke Yamauchi W., "Size and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinyl pyrrolidone-assisted crystallization pro cess", Cryst. Eng., 14, 3387-3396 (2012). https://doi.org/10.1039/c2ce25040c
  11. Walton K., Snurr R., "Applicability of the BET method for determining surface areas of microporous metal-organic frameworks", J. Am. Chem. Soc., 129, 8552-8556 (2007). https://doi.org/10.1021/ja071174k
  12. Enamul H., Nazmul Abedin K., Jung Hwa P., Sung Hwa J. "Synthesis of a Metal- Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study", J. Chem. Eur., 16, 1046-1052 (2009).
  13. Byrappa K., Adschiri T., "Hydrothermal technology for nanotechnology", Prog. Cryst. Growth. Ch., 53, 117-166 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.04.001
  14. Fumiyuki S., Ryosuke F., Takashi K., Yusu ke O., "Preparation of Monodisperse Coba lt(II) Hexacyanoferrate(III) Nanoparticles U sing Cobalt Ions Released from a Citrate Complex", J. Am. Chem. Soc., 116, 3394-3399 (2012).
  15. Banalata S., Sumanta Kumar S., Suryak anta N., Dibakar D., Panchanan P.,"Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants", Stud. Surf. Sci. Catal., 2, 1367-1374 (2012).
  16. Jun W., Qianwang C., Binyang H., Zhe nmeng P., "Synthesis and Magnetic Properties of Single-Crystals of $MnFe_2O_4$ Nanorods", EUR. J. INORG. CHEM., 2004, 1165-1168 (2004).
  17. Ghercaa D., Puia A., Nicab V., Caltunb O., Cornei N., "Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites", CERAM. INT., 40, 9599- 9607 (2014). https://doi.org/10.1016/j.ceramint.2014.02.036
  18. Zhongli W., Xiaojuan L., Minfeng L., Ping C., Yao L., Xianfeng Z., Jian M., "Preparation of One-Dimensional $CoFe_2O_4$ Nanostructures and Their Magnetic Properties", J. Am. Chem. Soc., 112, 15171-15175 (2008).