Property of hfac(hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene) as a Liquid Precursor for Chemical Vapor Deposition of Copper Films

액상 구리 전구체 hfac (hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene)의 특성 평가

  • Lee, Si-U (Pohang University of Science and Technology) ;
  • Gang, Sang-U (Pohang University of Science and Technology) ;
  • Han, Sang-Ho (Pohang University of Science and Technology)
  • 이시우 (포항공대 화학공학과 정보전산재료화학연구실) ;
  • 강상우 (포항공대 화학공학과 정보전산재료화학연구실) ;
  • 한상호 (포항공대 화학공학과 정보전산재료화학연구실)
  • Published : 1999.11.01

Abstract

An organometallic precursor, hfac(hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl- 1-butene) was synthesized, evaluated and compared with other precursors for metal organic chemical vapor deposition of copper thin films. It was found that at $40^{\circ}C$, the vapor pressure was an order of magnitude higher (about 3 torr) than (hfac) Cu vinyltrimethylsilane (VTMS) and films could be deposited at the substrate temperature of 100-$280^{\circ}C$ with deposition rate substantially higher. The copper films contained no detectable impurities as measured by Auger electron spectroscopy and had a resistivity of about 2.0$\mu\Omega$-cm in the deposition temperature range of 150 to $250^{\circ}C$. From the thermal analysis, (hfac)Cu(I)(DMB) is believed to be quite stable and no appreciable amount of precipitation was observed at $65^{\circ}C$ heating for more than a month.

본 연구에서는 기존에 알려진 구리 전구체와 새롭게 개발된 전구체인 hfac (hexafluoroacetylacetonate) Cu(I) DMB (3,3-dimethyl-1-butene)를 비교 평가해보았다. (Hfac)Cu(I) (DMB)의 증가압은 $40^{\circ}C$에서 3 torr 정도로 기존에 잘 알려진 (hfac)Cu(I) vinyltrimethylsilane (VTMS) 보다 10배 정도 높은 것으로 나타났으며 그럼에도 불구하고 상당히 안정하여 $65^{\circ}C$에서 일주일 이상 가열하여도 변하지 않았다. 이 전구체로 100-$280^{\circ}C$에서 구리 박막을 증착할 수 있었으며 150-$250^{\circ}C$온도 범위에서 2.0$\mu\Omega$-cm의 순수한 구리 박막을 얻었다. 구리 박막의 증착 속도는 기존의 전구체보다 7~8배 정도 높은 것으로 나타났다.

Keywords

References

  1. Polyhedron v.14 M.J.Hampden-Smith;T.T.Kodas
  2. J. Mater. Sci.: Mater. Electron. v.8 H.Y.Yoen;Y.B.Park;S.W.Rhee
  3. J. Mater. Res. v.14 no.3 M.Y.Park;J.H.Son;S.W.Kang;S.W.Rhee
  4. J. Vac. Sci. Tech. A v.10 S.L.Cohen;M.Liehr;S.Kasi
  5. Thin Solid Films v.247 S.W.Kang;S.H.Han;S.W.Rhee
  6. Coord. Chem. Rev. v.178-180 P.Doppelt
  7. Acvanced Metallization Conference P.Doppelt;T.Y.Chen;R.Madar;J.Torres
  8. Electrochem. Solid-State Lett. v.1 M.Y.Park;J.H.Son;S.W.Rhee
  9. Thin Solid Films v.335 J.H.Son;M.Y.Park;S.W.Rhee
  10. Electrochemical and Solid-State Letters v.2 S.W.Kang;M.Y.Park;S.W.Rhee
  11. J. Electrochem. Soc. v.140 no.1 T.H.Baum;C.E.Larson
  12. Appl. Phys. Lett. v.59 S.K.Reynolds;C.J.Smart;E.F.Baran;T.H.Baum;C.E.Larson;P.J.Brock
  13. Appl. Phys. Lett. v.68 no.7 E.S.Choi;S.K.Park;H.K.Shin;H.H.Lee
  14. Organometallics v.4 G.Doyle;K.A.Eriksen;D. Van Engon