Hyperaccumulation mechanism in plants and the effects of roots on rhizosphere soil chemistry - A critical review

고축적식물의 중금속 흡수기작과 뿌리에 의한 근권 토양의 화학변화 - 총설

  • Kim, Kwon-Rae (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Owens, Gary (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Naidu, Ravi (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
  • Received : 2007.05.16
  • Accepted : 2007.07.15
  • Published : 2007.08.28

Abstract

Much research has been conducted in the field of phytoremediation since the discovery of the range of plants known as hyperaccumulators. Research has focused simultaneously on elucidating the mechanism of metal(loid) accumulation and development of practical techniques to enhance accumulation efficiency. To date, it is generally understood that there are five specific mechanisms employed by hyperaccumulating plant species that are either not or under utilized by non-hyperaccumulators. These include 1) enhanced metal(loid)s uptake through the root cell, 2) enhanced translocation in plant tissue, 3) detoxification and sequestration, 4) enhanced metal availability in soil:root interface, and 5) active root foraging toward metal(loid) enriched soils. Among these mechanisms, understanding of the plant-root effect on metal(loid) dynamics and subsequent plant uptake is vital to overcome the inherit limitation of phytoremediation caused by low metal(loid) solubility in soils. Plant roots can influence the soil chemistry in the rhizosphere through changes in pH and exudation of organic compounds such as low-molecular-weight organic acids (LMWOAs) which consequently change metal(loid) solubility. The decrease in soil pH by plant release of $H^+$ results in increased metal solubility. Elevated levels of organic compounds in response to high metal soil concentrations by plant exudation may also increases metal concentration in soil solution through formation of organometallic complexes.

토양중 중금속을 흡수해서 체내에 고농도로 축적할 수 있는 식물, 이른바 고축적식물(hyperaccumulator)의 발견으로 오염토양에 대한 식물복원(phytoremediation) 기술에 대한 많은 연구들이 수행되고 있다. 이들 연구의 방향은 크게 고축적식물의 중금속 축적 기작을 밝히기 위한 것과 축적효율을 높임으로써 복원 효율을 향상시키는 실용적인 기술개발로 나누어진다. 지금까지 고축적식물에 의한 중금속 축적 기작은 다섯 가지의 특이 기작으로 알려져 있는데, 1) 뿌리세포의 중금속 흡수 증진, 2) 식물체 조직내의 중금속 이동성 향상, 3) 중금속의 무독화(detoxification) 및 격리(sequestration), 4) 토양-뿌리 경계면에서의 중금속 유효도 증진, 그리고 5) 중금속 오염토양으로의 능동적인 뿌리의 성장 등이 이에 속한다. 일반적으로 토양 중 낮은 중금속 유효도는 식물복원 기술의 현장 적용에 있어 제한요소로 간주된다. 이를 극복하기 위해서는 위에 기술된 다섯 가지 기작 중 고축적식물의 뿌리가 근권 토양중 중금속의 화학변화에 미치는 영향을 이해하는 것이 매우 중요하다. 식물 뿌리에 의한 근권 토양의 pH 변화와 뿌리에서 나오는 분자량이 적은 유기산(low-molecular-weight organic acids, LMWOAs)과 같은 유기성 분비물은 근권부 토양의 화학적 특성을 변화시키고 결과적으로 중금속의 유효도를 변화시킨다. 예를 들어 뿌리에서 나오는 $H^+$ 이온은 토양 pH를 감소시키고 이에 따라 중금속의 유효도는 증가한다. 또한 고농도의 중금속에 노출된 뿌리는 많은 양의 유기물질을 분비하게 되고 근권 토양에 축적되는 이 유기물질은 토양중 중금속과 결합하여 유기복합물질(organo-metallic complexes)을 형성하면서 유효도를 증가시킨다.

Keywords

References

  1. Alloway, B.S., A.P. Jackson. 1991. The behaviour of heavy metals in sewage sludge amended soils. Sci. Total Environ. 100:151-176 https://doi.org/10.1016/0048-9697(91)90377-Q
  2. Awad, F., V. Romheld, H. Marschner. 1994. Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant and soil 165:213-218 https://doi.org/10.1007/BF00008064
  3. Bartlett, R.J., D.C. Regio. 1972. Effects of chelation on toxicity of aluminium. Plant and Soil 37:419-423 https://doi.org/10.1007/BF02139985
  4. Bengough, A.G., B.M. McKenzie. 1997. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J. Exp. Bot. 48:885-893 https://doi.org/10.1093/jxb/48.4.885
  5. Bernal, M.P., S.P. McGrath, A J. Miller, A J.M. Baker. 1994. Comparison of the chemical changes in the rhizosphere of the nickel hyper accumulator Alyssum murale with the nonaccumulator Raphanus sativus. Plant and Soil 164:251-259 https://doi.org/10.1007/BF00010077
  6. Bert, V., P. Meerts, P. Saumitou-Laprade, P. Salis, W. Gruber, N. Verbruggen. 2003. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249(1):9-18 https://doi.org/10.1023/A:1022580325301
  7. Boominathan, R., P.M. Doran. 2003. Cadmium tolerance and antioxidative defences in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotech. Bioengin. 83(2):158-167 https://doi.org/10.1002/bit.10656
  8. Brooks, R.R., S. Shaw, A. Asensi Marfil. 1981. The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol. Plant 51:167-170 https://doi.org/10.1111/j.1399-3054.1981.tb02693.x
  9. Chaignon, V., D. Di Malta, P. Hinsinger. 2002. Fe-deficiency increases Cu acquisition by wheat cropped in a Cucontaminatedvineyard soil. New Phytol. 154:121-130 https://doi.org/10.1046/j.1469-8137.2002.00349.x
  10. Chen, H., T. Cutright. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45(1):21-28 https://doi.org/10.1016/S0045-6535(01)00031-5
  11. Cieslinski, G., K.C.J. Van Rees, A.M. Szmigielska, G.S.R. Krishnamurti, P.M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and soil 203:109-117 https://doi.org/10.1023/A:1004325817420
  12. Clark, R.B. 1969. Organicacids from leaves of several crop plants by gas chromatography. Crop Science 9:341-343 https://doi.org/10.2135/cropsci1969.0011183X000900030028x
  13. Cobbett, C.S. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant BioI. 3:211-216 https://doi.org/10.1016/S1369-5266(00)00066-2
  14. Cunningham, S.D., W.R. Berti, J.W. Huang.1995. Phytoremediation of contaminated soils. Biotechnol. 13:393-397
  15. Curl, E.A., B. Trueglove. 1986. The rhizosphere. Berlin: Springer-Verlag
  16. Darrah, P.R. 1991. Measuring the diffusion-coefficient of rhizosphere exudates in soil 2. The diffusion of sorbing compounds. J. Soil Sci. 42:421-434 https://doi.org/10.1111/j.1365-2389.1991.tb00420.x
  17. Delhaize, E., P.R. Ryan, P.J. Randall. 1993. Aluminium tolerance in wheat (Triticum aestivum L.) 2. Aluminium stimulated excretion of malic acid from root apices. Plant physiol. 103:695-702 https://doi.org/10.1104/pp.103.3.695
  18. Ebbs, S., I. Lau, B. Ahner, L. Kochian. 2002. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens(J. & C. Presl). Planta 214:635-640 https://doi.org/10.1007/s004250100650
  19. Elgala, A.M., A. Amberger. 1988. Root exudate and the ability of com to utilize insoluble sources of iron. J. Plant Nutr. 11 :677-690 https://doi.org/10.1080/01904168809363833
  20. Feng, M-H., S-Q. Shan, S. Zhang, B. Wen. 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, $CaCl_{2}$, and $NaNO_{3}$ extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 137(2):231-240 https://doi.org/10.1016/j.envpol.2005.02.003
  21. Fox, T.R., N.B. Comerford, W.W. McFee. 1990. Phosphorus and aluminium from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 54:1763-1767 https://doi.org/10.2136/sssaj1990.03615995005400060043x
  22. Gramss, G., K.D. Voigt, F. Bublitz, H. Bergmann. 2003. Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments. J. Basic Microbial 43(6):483-498 https://doi.org/10.1002/jobm.200310251
  23. Griffin, G.J., M. Hale, F.J. Shay. 1976. Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil BioI. Biochem 8:29-32 https://doi.org/10.1016/0038-0717(76)90017-1
  24. Guerinot, M.L., Y. Yi. 1994. Iron: nutritious, noxious, and not readily available. Plant PhysioI.104:815-820 https://doi.org/10.1104/pp.104.3.815
  25. Han, F., X.Q. Shan, J. Zang, Y.N. Xie, Z.G. Pei, S.Z. Zhang, Y.G. Zhu. 2005. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165:481-492 https://doi.org/10.1111/j.1469-8137.2004.01256.x
  26. Hawes, M.C., U. Gunawardena, S. Miyasaka, X. Zhao. 2000. The role of root border cells in plant defence. Trends Plant Sci. 5:128-133 https://doi.org/10.1016/S1360-1385(00)01556-9
  27. Hersman, L., T. Loyd, G. Sposito. 1995. Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 59:3327-3330 https://doi.org/10.1016/0016-7037(95)00221-K
  28. Hettiarachchi, G.M., G.M. Pierzynski. 2004. Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environ. Progress 23(1):78-93 https://doi.org/10.1002/ep.10004
  29. Hinsinger, P. 1998. How do plantroots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Ave. Agron. 64:225-265 https://doi.org/10.1016/S0065-2113(08)60506-4
  30. Hinsinger, P. 2001. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. p. 25-40. In G.R. Gobran, W.W. Wenzel, E. Lombi (ed.) Trace elements in the rhizosphere. Boca Raton, CRC
  31. Hinsinger, P., G.R. Gobran, P.J. Gregory, W.W. Wenzel. 2005a. Rhizosphere geometry and heterogeneity arising from rootmediated physical and chemical processes. New Phytol. 168:293-303 https://doi.org/10.1111/j.1469-8137.2005.01512.x
  32. Hinsinger, P., C. Plassard, B. Jaillard. 2005b. Rhizosphere: A new frontier for soil biogeochemistry. J. Geochem. Exp. 88:210-213
  33. Hue, N.V., G.R. Craddock, F. Adams. 1986. Effect of organic acids on aluminium toxicity in subsoils. Soil Sci. Soc. Am. J. 50:28-34 https://doi.org/10.2136/sssaj1986.03615995005000010006x
  34. Hutchinson, J. J., S.D. Young, S.P. McGrath, H.M. West, C.R Black, A.J.M. Baker. 2000. Determining uptake of 'non-labile' soil cadmium by Thlaspi caerulescens using isotopic dilution techniques. New Phytol. 146:453-460 https://doi.org/10.1046/j.1469-8137.2000.00657.x
  35. Ismail, C., O. Levent, K. Serna. 1996. Zinc-efficient wild grasses enhance release of phytosiderophores under zinc deficiency. J. Plant Nut. 19(3&4):551-563 https://doi.org/10.1080/01904169609365142
  36. Jones, D.L. 1998. Organic acids in the rhizosphere a critical review. Plant and Soil 205:25-44 https://doi.org/10.1023/A:1004356007312
  37. Jones, D.L., P.R. Darrah. 1996. Re-sorption of organic-compounds by roots of Zea may L. and its consequences in the rhizosphere. 3. characteristics of sugar influx and efflux. Plant and Soil 178: 153-160 https://doi.org/10.1007/BF00011173
  38. Jones, D.L., P.R. Darrah, L'V, Kochian. 1996. Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil 180:57 -66 https://doi.org/10.1007/BF00015411
  39. Jones, D.L., A. Hodge, Y. Kuzyakov. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163:459-480 https://doi.org/10.1111/j.1469-8137.2004.01130.x
  40. Kersten, W.J., R. R. Brooks, R.D. Reeves, T. Jaffre. 1980. Nature of nickel complexes in Psychotria douarrei and other nickelaccumulating plants. Phytochemistry 19:1963-1965 https://doi.org/10.1016/0031-9422(80)83013-5
  41. Kerven, G.L., C.J. Asher, D.G. Edwards, Z. Ostatek-Boczynski. 1991. Sterile solution culture techniques for aluminium studies involving organic acids. J. Plant Nut. 14:975-985 https://doi.org/10.1080/01904169109364257
  42. Kidd, P.S., M. Lugany, C. Poschenrieder, B. Gunse, J. Barcelo. 2001. The role of root exudates in aluminium resistance a siliconinduced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52:1339-1352 https://doi.org/10.1093/jexbot/52.359.1339
  43. Knight, B., F.J. Zhao, S.P. McGrath, Z.G. Shen. 1997. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil 197:71-78 https://doi.org/10.1023/A:1004255323909
  44. Kochian, L.V. 1995. Cellular mechanisms of aluminium toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Mol. BioI. 46:237-260 https://doi.org/10.1146/annurev.pp.46.060195.001321
  45. Kraffczyk, L., G. Trolldenier, H. Beringer. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil BioI. Biochem.16:315-322 https://doi.org/10.1016/0038-0717(84)90025-7
  46. Kramer, U. 1997. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instr. Meth. Phys. Res. 130:346-350 https://doi.org/10.1016/S0168-583X(97)00368-6
  47. Kramer, V., J. D. Cotter-Howells, J. M. Charnock, A. J. M. Baker, A.A.C. Smith. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635-638 https://doi.org/10.1038/379635a0
  48. Kramer, V., I.J. Pickering, R.C. Prince, I. Raskin, D.E. Salt. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122:1343-1353 https://doi.org/10.1104/pp.122.4.1343
  49. Landsberg, E.C. 1981. Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species. J. Plant Nutr. 3:579-591 https://doi.org/10.1080/01904168109362862
  50. Lasat, M.M., A. J. M. Baker, L.V. Kochian. 1996. Physiological characterisation of root $Zn^{2+}$ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol. 112: 1715-1722 https://doi.org/10.1104/pp.112.4.1715
  51. Lee, J. R.K. Reeves, R.R. Brooks, T. Jaffre. 1978. The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17:1033-1035 https://doi.org/10.1016/S0031-9422(00)94274-2
  52. Li, S.F., J.F. Ma, H. Matsumoto. 2002. Aluminium-induced secretion of both citrate and malate in rye. Plant and Soil 242:235-243 https://doi.org/10.1023/A:1016257906153
  53. Li, X.F., J.F. Ma, H. Matsumoto. 2000. Pattern of aluminiuminduced secretion of organic acids differs between rye and wheat. Plant Physiol. 123:1537-1543 https://doi.org/10.1104/pp.123.4.1537
  54. Li, Y.H., B.X. Huang, X.Q. Shan. 2003. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis. Anal. Bioanal.Chem. 375:775-780 https://doi.org/10.1007/s00216-003-1789-1
  55. Lombi, E., W.W. Wenzel, G.R. Gobran, D.C. Adriano. 2000. Dependency ofphytoavailability of metals on indigenous and induced rhizosphere processes: a review. p. 3-24. In G.R. Gobran, W.W. Wenzel, E. Lombi (ed.) Trace elements in the rhizosphere. Boca Raton, CRC press
  56. Lombi, E., F-J. Zhao, M. Fuhrmann, L.Q. Ma, S.P. Mcgrath. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator pteris vittata. New Phytol. 156:195-203 https://doi.org/10.1046/j.1469-8137.2002.00512.x
  57. Luo, Y.M., P. Christie, A.J.M. Baker.2000. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41(1-2):161-164 https://doi.org/10.1016/S0045-6535(99)00382-3
  58. Mariano, E.D., R.A. Jorge, W.G. Keltjens, M. Menossi. 2005. Metabolism and root exudation of organic acid anions under aluminium stress. Toxic metals in plants 17(1): 157-172
  59. Marschner, H. 1995. Mineral nutrition of higher plants. London, Academic press
  60. McCully, M.E. 1999. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annual Review of Plant Physiol, Plant MolecuI. Biology 50:695-718 https://doi.org/10.1146/annurev.arplant.50.1.695
  61. McGrath, S.P., Z.G. Shen, F.J. Zhao. 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil 188: 153-159 https://doi.org/10.1023/A:1004248123948
  62. McLay, C. D. A. L Barton, C. Tang. 1997. Acidification potentialof ten grain legume species grown in nutrient solution. Aust. J. Agric. Res. 48: 1025-1032 https://doi.org/10.1071/A96174
  63. Mench, M., E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil 132:187-196 https://doi.org/10.1007/BF00010399
  64. Morel, J.L., L. Habib, S. Plantureaux, A. Guckert. 1991. Influence of maize root mucilage on soil aggregate stability. Plant and Soil 136:111-119 https://doi.org/10.1007/BF02465226
  65. Morel, J.L., M. Mench, A. Guckert. 1986. Measurement of $Pb^{2+}, Cu^{2+}$ and $Cd^{2+} $ binding with mucilage exudates from maize (Zea mays L.) roots. BioI. Fertil, Soils 2:29-34 https://doi.org/10.1007/BF00638958
  66. Nardi, S., G. Concheri, D. Pizzeghello, A. Sturaro, R. Rella, G. Parvoli. 2000. Soil organic matter mobilization for auxin transport and auxin-mediated development. Plant Cell 13:2441-2454
  67. Nian, H., M.Y. Zheng, J.A. Sung, J.C. Zhi, H. Matsumoto. 2002. A comparative study on the aluminium- and copper-induced organic acid exudation from wheat roots. Physiol. Planta.116(3):328-335 https://doi.org/10.1034/j.1399-3054.2002.1160307.x
  68. Nigam, R., S. Srivastava, S. Parakash, M.M. Srivastava. 2001. Cadmium mobilisation and plant availability-the impact of organic acids commonly exuded from roots. Plant and Soil 230:107-113 https://doi.org/10.1023/A:1004865811529
  69. Onyatta, J.O., P.M. Huang. 2003. Kinetics of cadmium release from selected tropical soils from Kenya by low-molecular-weight organic acid. Soil Sci. 168(4):234-252 https://doi.org/10.1097/00010694-200304000-00002
  70. Parker, D.R., J.P. Pedler. 1998. Probing the 'malate hypothesis' of differential aluminiumtolerance in wheat by using other rhizotoxic ions as proxies for AI. Planta. 205:389-396 https://doi.org/10.1007/s004250050335
  71. Pelosi, P., R. Fiorentini, C. Galoppini. 1976. On the nature of nickel compounds in Alyssum bertolonii Desv-Il, Agr. BioI. Chem. 40:1641-1642 https://doi.org/10.1271/bbb1961.40.1641
  72. Qin, P., X-Q. Shan, B. Wei. 2004. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57(4):253-263 https://doi.org/10.1016/j.chemosphere.2004.06.010
  73. Rovira, A.D. 1969. Plant root exudates. Bot. Rev. 35:33-57
  74. Ryan, P.R., E. Delhaize, P.J. Randall. 1995. Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust. J. Plant physiol, 22:351-536
  75. Sagner, S., R. Kneer, G. Wanner, J.P. Gcosson, B. Deus-Neumann, M.H. Zenk. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339-347 https://doi.org/10.1016/S0031-9422(97)00593-1
  76. Salt, D.E., N. Kato, U.I.R. Kramer. 2000. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. p. 189-200. In N. Terry, G. Banuelos (ed.) Phytoremediation of contaminated soil and water. Boca Raton, CRC press
  77. Salt, D.E., U. Kramer. 2000. Mechanisms of metal hyperaccumulation in plants. p. 231-246. In I. Raskin, B.D. Ensley (ed.) Phytoremediation of toxic metals. New York, a wileyinterscience publication
  78. Salt, D.E., R.C. Prince, A. J. M. Baker, I. Raskin, I. J. Pickering. 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Tech. 33:713-717 https://doi.org/10.1021/es980825x
  79. Sas, L., Z. Rengel, C. Tang. 2001. Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci. 160(6):1191-1198 https://doi.org/10.1016/S0168-9452(01)00373-9
  80. Schmoger, M.E.V., M. Oven, E. Grill. 2000. Detoxification of arsenic by phytochelatins in plants. Plant Physiol. 122:793-801 https://doi.org/10.1104/pp.122.3.793
  81. Schwartz, C., J. L. Morel, S.E. Saumier, S.N. Whiting, A. J. M. Baker. 1999. Root development of the Zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant and Soil 208:103-115 https://doi.org/10.1023/A:1004519611152
  82. Seden, M. H. M., H.T. Wolterbeek. 1990. Effect of citric acid on the transport of cadmiumthrough Xylem vessels of excises tomato stem-leaf systems. Acta Bio. Neet. 39:297-303
  83. Shen, Z.G., F.J. Zhao, S.P. McGrath. 1997. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi ochroleucum. Plant, Cell and Environ. 20:898-906 https://doi.org/10.1046/j.1365-3040.1997.d01-134.x
  84. Stevenson, F.J. 1967. Organic acids in soils. p 119-146. In AD. McLaren, G.H. Peterson (ed.) Soil Biochem, vol. 1. New York, Marcel Dekker
  85. Strobel, B.W.2001. Influence of vegetation on low-molecularweight carboxylic acids in soil solution-a review. Geoderma 99(34):169-198 https://doi.org/10.1016/S0016-7061(00)00102-6
  86. Tang, C., C. D. A. McLay, L. Barton. 1997. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust. J. Exp. Agric. 37:563-570 https://doi.org/10.1071/EA96151
  87. Uren, N. C., H.M. Reisenauer. 1988. The role of root exudates in nutrient acquisition. Advances in plant nutrient 3:79-114
  88. Van Beusichem, M.L. 1981. Nutrient absorption by pea plants during dinitrogen fixation. J. comparison with nitrate nutrition. Neth. J. Agric. Sci. 29:259-273
  89. Walker, T.S., H.P. Bais, E. Grotewold, J. M. Vivanco. 2003. Root exudation and rhizosphere biology. Plant PhysioL 132(1):44-51 https://doi.org/10.1104/pp.102.019661
  90. Wenzel, W.W., M. Bunkowski, M. Puschenreiter, O. Horak. 2003. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soiL Environ. Pollut.123(1):131-138 https://doi.org/10.1016/S0269-7491(02)00341-X
  91. Wenzel, W.W., G. Wieshammer, W.J. Fitz, M. Puschenreiter, 2001. Novel rhizobox desigu to assess rhizosphere characteristics at high spatial resolution. Plant and Soil 237:37-45 https://doi.org/10.1023/A:1013395122730
  92. White, M.C., R.L. Chaney, A.M. Decker. 1981. Metal complexation in xylem fluid. III Electrophoretic evidence. Plant Physiol. 67:311-315 https://doi.org/10.1104/pp.67.2.311
  93. Whiting, S.N., M.R. Broadley, P.J. White. 2003. Applying a solute transfer model to phytoextraction: Zinc acquisition by Thlaspi caerulescens. Plant and Soil 249(1):45-56 https://doi.org/10.1023/A:1022542725880
  94. Whiting, S.N., J.R. Leake, S.P. McGrath, A.J.M. Baker. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145:199-210 https://doi.org/10.1046/j.1469-8137.2000.00570.x
  95. Wu, L.H., Y.M. Luo, P. Christie, M.H. Wong. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50(6):819-822 https://doi.org/10.1016/S0045-6535(02)00225-4
  96. Yang, Y.Y., J.Y. Jung, W.Y. Song, H.S. Suh, Y. Lee. 2001. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124:1019-1026 https://doi.org/10.1104/pp.124.3.1019
  97. Zhao, F.J., E. Lombi, S.P. McGrath. 2003a. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249(1):37-43 https://doi.org/10.1023/A:1022530217289
  98. Zhao, F.J., J.R. Wang, A.J.M. Barker, H. Schat, P.M. Bleeker, S.P. McGrath. 2003b. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol. 159:403-410 https://doi.org/10.1046/j.1469-8137.2003.00784.x