• 제목/요약/키워드: Organic Ferroelectric

검색결과 58건 처리시간 0.029초

Effect of preparation of organic ferroelectric P(VDF-TrFE) nanostructure on the improvement of tennis performance

  • Qingyu Wang
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.329-334
    • /
    • 2023
  • Organic ferroelectric material found vast application in a verity of engineering and health technology fields. In the present study, we investigated the application of the deformable organic ferroelectric in motion measurement and improving performance in tennis players. Flexible ferroelectric material P(VDF-TrFE) could be used in wearable motion sensors in tennis player transferring velocity and acceleration data to collecting devises for analyzing the best pose and movements in tennis players to achieve best performances in terms of hitting ball and movement across the tennis court. In doing so, ferroelectric-based wearable sensors are used in four different locations on the player body to analyze the movement and also a sensor on the tennis ball to record the velocity and acceleration. In addition, poses of tennis players were analyzed to find out the best pose to achieve best acceleration and movement. The results indicated that organic ferroelectric-based sensors could be used effectively in sensing motion of tennis player which could be utilized in the optimization of posing and ball hitting in the real games.

강유전 고분자 박막을 이용한 유기고분자 태양전지에서의 효율 증대 (Efficiency Enhancement in Organic Polymer Solar Cells with Ferroelectric Films)

  • 박자영;정치섭
    • 한국전기전자재료학회논문지
    • /
    • 제30권2호
    • /
    • pp.126-132
    • /
    • 2017
  • The power conversion efficiency of organic polymer solar cells was enhanced by introducing a ferroelectric polymer layer at the interface between active layer and metal electrode. The power conversion efficiency was increased by 50% through the enhancement of the open circuit voltage. To investigate the role of the ferroelectric layer on the dissociation process of the excitons, non-radiative portion of the exciton decay was directly measured by using photoacoustic technique. The results show that the ferroelectric nature of the buffer layer does not play any roles on the dissociation process of the excitons, which indicates the efficiency enhancement is not due to the ferroelectricity of the buffer layer.

Recent Advance of Flexible Organic Memory Device

  • Kim, Jaeyong;Hung, Tran Quang;Kim, Choongik
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.38-45
    • /
    • 2020
  • With the recent emergence of foldable electronic devices, interest in flexible organic memory is significantly growing. There are three types of flexible organic memory that have been researched so far: floating-gate (FG) memory, ferroelectric field-effect-transistor (FeFET) memory, and resistive memory. Herein, performance parameters and operation mechanisms of each type of memory device are introduced, along with a brief summarization of recent research progress in flexible organic memory.

Langmuir-Blodgett 법을 이용한 P(VDF-TrFE) 박막 트랜지스터 (P(VDF-TrFE) Thin Film Transistors using Langmuir-Blodgett Method)

  • 김광호
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.72-76
    • /
    • 2020
  • The author demonstrated organic ferroelectric thin-film transistors with ferroelectric materials of P(VDF-TrFE) and an amorphous oxide semiconducting In-Ga-Zn-O channel on the silicon substrates. The organic ferroelectric layers were deposited on an oxide semiconductor layer by Langmuir-Blodgett method and then annealed at 128℃ for 30min. The carrier mobility and current on/off ratio of the memory transistors showed 9 ㎠V-1s-1 and 6 orders of magnitude, respectively. We can conclude from the obtained results that proposed memory transistors were quite suitable to realize flexible and werable electronic applications.

강유전 고분자를 첨가한 유기태양전지의 효율 특성 (The Efficiency Characteristics of the Ferroelectric Polymer Added Organic Solar-cells)

  • 박자영;정치섭
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.589-594
    • /
    • 2016
  • P3HT:PCBM bulk heterojunction solar cells added with ferroelectric polymer were fabricated and characterized. By incorporating P3HT:PCBM solar cell with P(VDF-TrFE) ferroelectric additive, the power conversion efficiency was increased up to nearly 50%. Photoacoustic analysis on this phenomena was carried out for the first time. Through this study, we find that the ferroelectricity of the polymer additive plays the key role in the enhancement of the power conversion efficiency of the organic solar cell by suppressing the non-radiative recombination of charge transfer exciton more effectively.

Metal-Organic Decomposition법에 의한 강유전성 $YMnO_3$ 박막의 제조 및 특성 (Preparation of Ferroelectric $YMnO_3$ Thin Films by Metal-Organic Decomposition Process and their Characterization)

  • 김제헌;강승구;김응수;김유택;심광보
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.665-672
    • /
    • 2000
  • The ferroelectric YMnO3 thin films were prepared by MOD(metal-organic decomposition) method with Y- and Mn-acetylacetonate as starting materials. Thin films were grown on various substrates by spin-coating technique. The crystalline phases of the thin films were identified by X-ray diffractometer as a function of heat-treatment temperature, pH of coating solution and substrate. In addition, the effect of Mn/Y molar ratio(0.8~1.2) on the formation of hexagonal-YMnO3 phase was investigated. In forming highly c-axisoriented hexagonal-YMnO3 single phase, the Pt coated Si substrate was more effective than the bare Si substrate, and the optimum heat-treatment condition was at 82$0^{\circ}C$ for 30 min. Higher Mn/Y molar ratio within 0.8~1.2 and pH of YMnO3 precursor solution within 0.5~2.5 favored formation of ferroelectric hexagonal phase rather than orthorhombic phase. Leakage current density of the hexagonal-YMnO3 thin film formed on Pt(111)/TiO2/SiO2/Si substrate was low enough as 0.4~4.0$\times$10-8(A/$\textrm{cm}^2$) at 5 V and its remanent polarization(Pr), calculated from the P-E hysteresis loop, was 3 nC/$\textrm{cm}^2$.

  • PDF

P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터 (Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material)

  • 한상우;차호영
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.209-212
    • /
    • 2018
  • 본 논문에서는 P(VDF-TrFE)유기물 강유전체 기반 metal-ferroelectric-metal (MFM) capacitor 와 차세대 반도체 물질인 질화갈륨 반도체를 활용한 네거티브 커패시턴스 전계효과 트랜지스터를 제작 및 분석 하였다. 27 nm의 두께의 P(VDF-TrFE) MFM 커패시터의 분극지수는 4 MV/cm에서 $6{\mu}C/cm^2$ 값을 나타내었으며 약 65 ~ 95 pF의 커패시턴스 값을 나타내었다. 강유전체의 커패시턴스와 전계효과 트랜지스터의 커패시턴스 매칭을 분석하기 위해 제작된 P(VDF-TrFE) MFM 커패시터는 GaN 전계효과 트랜지스터의 게이트 전극에 집적화 되었으며 집적화되기 전 104 mV/dec 의 문턱전압 이하 기울기에서 82 mV/dec 값으로 개선된 효과를 보였다.

X-ray Scattering Studies for Phase Separated Composite Organic Films

  • Choi, H.;Eom, K.E.;Wang, Q.;Kumar, S.;Kim, J.H.;Shin, S.T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1229-1232
    • /
    • 2004
  • The ratio of optimized concentration on optical characteristics for phase-separated composite organic films (PSCOF) liquid crystal display is 30% of pre-polymer (NOA65) and 70% of ferroelectric liquid crystal (Felix). The layer structure in ferroelectric liquid crystal cell made by 30% NOA65 and 70% Felix materials is tilt-bookshelf layer structure. The angle of tilt-bookshelf structure are 17$^{\circ}$, 12$^{\circ}$ which are almost same of tilt angle of ferroelectric liquid crystal in Sm $C^{\ast}$ phase. We know that this result is from compensating the layer buckling. In this paper, we will discuss the effect of layer structure in PSCOF cell on ratio of concentration between pre-polymer and liquid crystal by x-ray measurements. We believe that technology of PSCOF is a good solution to solve the problems of align-defect and mechanical shock for future TV application and plastic LCD.

  • PDF

ReMnO3(Re:Ho, Er) 박막의 강유전성에 미치는 열처리 공정의 영향 (Effects of Thermal Heat Treatment Process on the Ferroelectric Properties of ReMnO3 (Re:Ho, Er) Thin Films)

  • 김응수;채정훈
    • 한국세라믹학회지
    • /
    • 제42권11호
    • /
    • pp.763-769
    • /
    • 2005
  • Ferroelectric $ReMnO_3$(Re:Ho, Er) thin films were deposited on Si(100) substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). Crystallinity and electric properties of $ReMnO_3$(Re:Ho, Er) thin films were investigated as a function of thermal heat treatment process, CHP (Conventional Heat-treatment Process) and RTP (Rapid Thermal Process). $ReMnO_3$(Re:Ho, Er) thin films prepared by RTP showed higher c-axis preferred orientation and homogeneous surface roughness than those prepared by CHP. The remnant polarization of ferroelectric hysteresis loop of $ReMnO_3$(Re:Ho, Er) thin films was strongly dependent on the c­axis preferred orientation of hexagonal single phase, and the leakage current characteristics of thin films were dependent on the homogeneity of grain size as well as surface roughness of thin films.

엘라스토머 기판 상에 제작한 유기 강유전체 메모리 소자의 전기적 특성 (Electrical Characteristics of Organic Ferroelectric Memory Devices Fabricated on Elastomeric Substrate)

  • 정순원;류봉조;구경완
    • 전기학회논문지
    • /
    • 제67권6호
    • /
    • pp.799-803
    • /
    • 2018
  • We demonstrated memory thin-film transistors (MTFTs) with organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) and an amorphous oxide semiconducting indium gallium zinc oxide channel on the elastomeric substrate. The dielectric constant for the P(VDF-TrFE) thin film prepared on the elastomeric substrate was calculated to be 10 at a high frequency of 1 MHz. The voltage-dependent capacitance variations showed typical butterfly-shaped hysteresis behaviors owing to the polarization reversal in the film. The carrier mobility and memory on/off ratio of the MTFTs showed $15cm^2V^{-1}s^{-1}$ and $10^6$, respectively. This result indicates that the P(VDF-TrFE) film prepared on the elastomeric substrate exhibits ferroelectric natures. The fabricated MTFTs exhibited sufficiently encouraging device characteristics even on the elastomeric substrate to realize mechanically stretchable nonvolatile memory devices.