DOI QR코드

DOI QR Code

Efficiency Enhancement in Organic Polymer Solar Cells with Ferroelectric Films

강유전 고분자 박막을 이용한 유기고분자 태양전지에서의 효율 증대

  • Park, Jayoung (Department of Laser and Optical Information Technology, Cheongju University) ;
  • Jung, Chi Sup (Department of Laser and Optical Information Technology, Cheongju University)
  • 박자영 (청주대학교 레이저광정보공학과) ;
  • 정치섭 (청주대학교 레이저광정보공학과)
  • Received : 2016.12.05
  • Accepted : 2016.12.30
  • Published : 2017.02.01

Abstract

The power conversion efficiency of organic polymer solar cells was enhanced by introducing a ferroelectric polymer layer at the interface between active layer and metal electrode. The power conversion efficiency was increased by 50% through the enhancement of the open circuit voltage. To investigate the role of the ferroelectric layer on the dissociation process of the excitons, non-radiative portion of the exciton decay was directly measured by using photoacoustic technique. The results show that the ferroelectric nature of the buffer layer does not play any roles on the dissociation process of the excitons, which indicates the efficiency enhancement is not due to the ferroelectricity of the buffer layer.

Keywords

References

  1. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001). [DOI: https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A]
  2. C. Pang, K. Park, D. Jung, and H. Chae, Applied Science and Convergence Technology, 16, 167 (2007).
  3. T. Kirchartz, K. Taretto, and U. Rau, J. Phys. Chem. C, 113, 17958 (2009). [DOI: https://doi.org/10.1021/jp906292h]
  4. C. Deibel, D. Mack, J. Gorenflot, A. Scholl, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, Pyhs. Rev. B, 81, 085202 (2010). [DOI: https://doi.org/10.1103/PhysRevB.81.085202]
  5. X. Y. Zhu, Q. Yang, and M. Muntwiler, Acc. Chem. Res., 42, 1779 (2009). [DOI: https://doi.org/10.1021/ar800269u]
  6. V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006). [DOI: https://doi.org/10.1063/1.2335377]
  7. J. Y. Park and C. S. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 589 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.9.589]
  8. K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram, H. K. Kodali, S. Bose, Y. Chen, J. W. Petrich, B. Ganapathysubramanian, and S. Chaudhary, Energy & Environmental Science, 5, 7042 (2012). [DOI: https:// doi.org/10.1039/c2ee03478f]
  9. Y. Yuan, T. J. Reece, P. Sharma, and S. Ducharme, Nat. Mater., 10, 296 (2011). [DOI: https://doi.org/10.1038/nmat2951]
  10. P. Wurfel, I. P. Batra, and J. T. Jacobd, Phys. Rev. Lett., 30, 1218 (1973). [DOI: https://doi.org/10.1103/PhysRevLett.30.1218]
  11. P. Wurfel and I. P. Batra, Pyhs. Rev. B, 8, 5126 (1973). [DOI: https://doi.org/10.1103/PhysRevB.8.5126]
  12. K. Asadi, P. Bruyn, P.W.M. Blom, and D. M. de Leeuw, Appl. Phys. Lett., 98, 183301 (2011). [DOI: https://doi.org/10.1063/1.3587630]
  13. Y. Yuan, P. Sharma, Z. Xiao, S. Poddar, A. Gruverman, S. Ducharme, and J. Huang, Energy & Environmental Science, 5, 8558 (2012). [DOI: https://doi.org/10.1039/c2ee22098a]
  14. J. Kim, H. You, S. Ducharme, and S. Adenwalla, J. Phys. Condens. Matter, 19, 086206 (2007). [DOI: https://doi.org/10.1088/0953-8984/19/8/086206]
  15. E.K.M. Siu and A. Mandelis, Pyhs. Rev. B, 34, 7222 (1986). [DOI: https://doi.org/10.1103/PhysRevB. 34.7222]
  16. A. Mandelis and E.K.M. Siu, Pyhs. Rev. B, 34, 7209 (1986). [DOI: https://doi.org/10.1103/PhysRevB. 34.7209]