• Title/Summary/Keyword: Ore minerals

Search Result 354, Processing Time 0.02 seconds

Gas and Solute Compositions of Fluid Inclusions in Quartz from Some Base-metal ore Deposits, South Korea (남한의 주용 금속광상산 석영내의 유체포유물의 가스성분과 용존성분의 화학조성)

  • Kim, Gyu-Han;Jeong, Hae-Ran
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 1999
  • Gas and chemical compositions of fluid inclusions in quartz some of Au-Ag, Pb-Zn-Cu and W-Mo mineral deposits in South Kores were analyzed to interpret the sources of ore fluid and the depositional condition of ore minerals in base-metal ore deposits. Fluid inclusions in quartz from the gold and silver mines are characterized by $CO_2$ rich fluids which have a wide range in $CH_4 \;and\; CO_2$ contents ($CH_4/CO_2$=0.001-0.225). The $CO_2$ rich but $CH_4$-poor nature of the fluid reflects the high fo2 condition during the mineral precipitation. The C2H6 is detected in hydrothermal quartz vines in metasedimentary rocks from the Jeonjoo-il, Youngbokari and Taechang mines. The $CH_4 /CO_2$ rations in W-Mo bearing quartz veins range from 0.005 to 0.214, which is similar with those in Au-Ag mines. However, skarn formation stage. Fluid inclusions, A relatively good correlation between Na and Cl contentrations reflects varible salinity in the fluid inclusion, it is suggested that the chemistry of promary magmatic hydrothermal fluids has changed during post-magmatic alteration and/or wall rock alteration processes. The content of gas compositions also depends on the kinds of country rocks, supporting above conclusion.

  • PDF

Studies on the Skarn-type Ore Deposits and Skarn Minerals in Gyeongnam Province (경남지구(慶南地區)의 스카른형(型) 광상(鑛床)의 성인(成因)과 스카른광물(鑛物)에 관(關)한 연구(硏究))

  • Woo, Young Kyun;Lee, Min Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 1982
  • Many skarn type iron ore deposits are distributed in Kimhae-Mulgeum area of Gyeongnam Province. Integrated field, mineralogic, geochemical and fluid inclusion studies were undertaken to illustrate the character and origin of the ores in this area. The iron ore deposits in this area are NS or NNE trending fracture filling magnetite veins which are developed in andesitic rocks near the contact with late Cretaceous micrographic granite bodies. Symmetrically zoned skarns are commonly developed in the magnetite veins of this area. Zoning of skarn from center to margin of the vein are as follows; garnet quartz skarn-epidote skarn-epidote orthoclase skarn-altered andesitic rocks. Major ore mineral is magnetite and small amount of hematite, pyrite, pyrrhotite, chalcopyrite and sphalerite are associated. Vein paragenesis reveals four depositional stages; 1) skarn stage, 2) iron sulfide and oxide stage, 3) skarn stage, 4) sulfide stage Minute halite-bearing polyphase inclusions and liquid inclusions are contained in quartz. Filling temperatures range from $257^{\circ}$ to $370^{\circ}C$.

  • PDF

Ore Genesis of the Wondong Polymetallic Mineral Deposits in the Taebaegsan Metallogenic Province (태백산광화대내의 원동 다금속광상의 성인)

  • Hwang, Duk Hwan;Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.375-388
    • /
    • 1998
  • The purpose of this study is to investigate the ore genesis and occurrence of the Wondong polymetallic mineral deposits. The Pb-Zn, Fe and W-Mo mineralizations are found in skarn zones which formed mainly in or along the fault shear zones with the $N25-40^{\circ}W$ and $N10-50^{\circ}E$ directions, whereas the Cu-Mo mineralization is appeared hydrothermal replacement zone. The skarn minerals consist mainly of garnet and epidote, which were the last alteration phases between pneumatolytic and hydrothermal stages. The mineral paragenesis toward the late stage are as follows: arsenopyrite, scheelite, magnetite, pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and molybdenite. Average ore grades are 0.33 g/t Au, 46.29 g/t Ag, 0.06% Cu, 4.4% Pb, 2.61% Zn and 29.39% Fe in tunnels, and 0.31 % Cu, 0.52% Pb, 6.29% Zn, 29.29% Fe, 0.03% Mo and 0.12% $WO_3$ in drill cores. Fluid inclusion data shows that Type I (liquid-rich), Type II (vapor-rich) and Type III (halite-bearing) inclusions are coexisted and their homogenization temperatures are quite similar. This indicates that boiling conditions have been reached during the mineralization. It is also likely that the ore solutions were evolved through the mixing between magmatic and meteoric waters. Rhyolite and quartz porphyry far the mineralization probably are not responsible of the Wondong polymetallic mineral deposits.

  • PDF

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan (괴산 성도 연-아연 광상의 산출광물과 생성환경)

  • Ahn, Seongyeol;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.325-340
    • /
    • 2017
  • The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.

Studies on the Geology and Geochemistry in the Beonam Mine, Korea (전북 번암광산의 지질과 지화학적 연구)

  • Chung, Jae-Il;Na, Choon-Ki;Lee, Young-Up;Jeon, Seo-Ryeong;Kim, Seon-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.623-633
    • /
    • 1995
  • The Beonam deposits which is located in south-western part of Sobaeksan massif are emplaced along $N20{\sim}30^{\circ}E$ trending fissures in Precambrian Sobaeksan gneiss complex. Surrounding granites are inferred to be differentiated and formed from calc-alkaline magma which was generated from remelting or partial melting of the crustral material having igneous composition. The Sr isotope data of ore minerals showing significantly low initial Sr value relative to those of surrounding granite batholiths suggest that the ore-bearing fluid formed the Beonam Au-Ag mine are isotopically distinct from those of the wall rocks, and it indicates that there is no evidence of genetic relationship between ore-bearing fluids and surrounding granites, although further study should be needed. The results of paragenetic studies suggest three stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage, stage III: minor silverbearing minerals, barren quartz and carbonates stage. The temperature, salinity and pressure of the Beonam deposits estimated from mineral assemblage, chemical composition, fluid inclusion and sulfur isotope geothermometry are as follows; stage I: $200{\sim}315^{\circ}C$, 3.5~6.5 NaCl eq. wt%, 0.28~0.61 Kbar, stage II: $150{\sim}235^{\circ}C$, 4.5~7.4 NaCl eq. wt%, 0.11~0.15 Kbar. The estimated oxygen and sulfur fugacity during first stage mineralization, based on phase relation of associated minerals, range from $10^{35.1}{\sim}10^{-39.7}$ atm. and $10^{-11.0}{\sim}10^{-13.4}$ atm., respectively. All these evidences suggest that the Beonam deposits are polymetallic meso-epithermal ore deposits.

  • PDF

Physical Properties of Rocks at the Gagok Skarn Deposit (가곡 스카른광상 암석의 물리적 특성)

  • Shin, Seungwook;Park, Samgyu;Kim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.180-189
    • /
    • 2013
  • Geophysical exploration is widely used to develop strategic mineral resources in the world because of its efficient method in detecting mineralized zones in the metallic ore deposit. It is important to understand the physical properties of the stratum so that geophysical data can be more accurately interpreted. This paper is to comprehend physical properties of the rock at the Gagok mine, a typical skarn deposit in Korea. Thus, laboratory tests were conducted on specimens of ore and host rocks which were collected from rock outcrops and drill cores at the Gagok mine. Using the measurement system of rock physical property, we investigated the density, magnetic susceptibility, resistivity, and spectral induced polarization. According to the results, all physical properties of specimens had wide differences depending on contents of ore minerals, which are formed by skarnization. Especially, using the chargeability and time constant from the calculated spectral induced polarization data by the Cole-Cole inversion, we could estimate the volume contents as well as the grain size of the sulfide minerals. Therefore, the spectral induced polarization technique may be considered a useful method when exploring metallic ore deposit with sulfide minerals.

Geochemical and Petrographical Studies on the Fergusonite Associated with the Nb-Y Mineralization Related to the Alkaline Granite, Kyemyeongsan Formation, Korea (계명산층내 알칼리 화강암 기원의 Nb-Y 광화작용에 수반되는 퍼구소나이트의 지구화학 및 산출특성 연구)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.395-406
    • /
    • 1997
  • Some RE (Zr, Nb, REE) ore deposits are located in the middle part of the Korean peninsula. Geotectonically, the RE ore deposits situated on the Kyemyeongsan Formation of northern margin of the Okcheon geosynclinal belt and in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits distributed in Kyemyeongsan Formation which consists of schist and alkaline granite. The alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nb, Ti-Nb-(U), Nd-Th group minerals. Fergusonite, one of Nb-Y rich REE minerals belonging to the A-B oxides, is most common mineral in the rare metal deposits. The fergusonite bearing rocks may be devided into four types by occurrence features and mineral association, that is, zircon type, allanite vein, feldspar type, and fluorite type. Fergusonites show wide variations in optical properties, due to part of differences in their chemical composition (depending on the types), but also the degree of crystalinity of the individual specimens. Fergusonite metamicts enclosed in biotite are generally surrounded by well developed pleochroic haloes. Usually, fergusonite is accompanied with zircon and other REE-bearing minerals. Petrographical and chemical data are presented for fergusonites which collected different types. $Nb_2O_3$ and $Y_2O_3$ contents range from 48.51 to 53.01 wt.% and 29.18 to 42.02 wt.% respectively. Also, $ThO_2$, (1.83~6.93), $UO_2$, (0.17~2.84), ${\sum}RE_2O_3$ (except to Y) (1.11~8.73), and $TiO_2$, (0.19~1.19 wt.%) contents show variational compositions according to fergusonite types. The ${\sum}RE_2O_3$ of fergusonites are positive relation with $Y_2O_3$ and negative relaton with $ThO_2$ and $({\sum}{RE_2O_3}-{Y_2O_3})$. The $Nb_2O_3$ is sightly negative relation with $Ta_2O_3$. Back-scattered electron microscope images (BEI) of fergusonite show the mineral composition and textural feature is very complicated. The variation of Nb, Th and REE content of fergusonite and the modes of occurrence of mineral, suggests that REE may have been mobilized during the circulation of hydrothermal fluids related to contact metamorphism (metasomatism). The chemical variation of the fergusonites with occurrences and mineral association can be related to metasomatism of alkaline fluid was probably the dominant ore-forming process in Chungju district.

  • PDF

Mineralization and Genetic Environments of the Central and Main Orebodies in the Manjang Deposit, Goesan (만장광상 중앙광체와 본광체의 광화작용과 생성환경)

  • Yu, Hyunmin;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-101
    • /
    • 2018
  • The Manjang deposit developed in the Hwajeonri formation of the Okcheon metamorphic belt consists of the Central and Main orebodies of Cu-bearing hydrothermal vein type and the Western orebody of Fe-skarn type. This study focuses on the Cu mineralization of the Central and Main orebodies to compare with the genetic environments of the Western orebody previously studied. The Central orebody produced pyrrhotite and chalcopyrite as major ore minerals with vein texture, while the Main orebody contains pyrite, arsenopyrite, and chalcopyrite as major ore minerals with vein, massive, and brecciated texture. Sphalerite, galena, magnetite, ilmenite, rutile, cassiterite, wolframite, and stannite are also accompanied. Local occurrence of skarn is dominated by grossular and hedenbergite, reflecting the reduced condition of the skarnization. Geothermometries of sphalerite-stannite in the Central orebody and arsenopyrite-pyrite in the Main orebody indicate the formation temperature of $204-263^{\circ}C$ and $383-415^{\circ}C$, respectively. Sulfur fugacity of $10^{-6}-10^{-7}atm$. in the Main orebody decreased toward the Central orebody. Sulfur isotope compositions of sulfide minerals from the Central and Main orebodies are 4.6-7.9‰ and 4.3-7.0‰, respectively, reflecting magmatic origin with slight influence by host rock. Considering ore mineralogy, texture as well as physicochemical conditions, the Main and Central orebodies of hydrothermal Cu mineralization reflect the characteristics of proximal and distal type ore mineralization, respectively, related to hidden igneous rocks, and they were generated under different hydrothermal systems from the Fe-skarn Western orebody.

Genesis of the Ogcheon Gold-silver Deposit in Republic of Korea: Ore Minerals, Fluid Inclusion and Stable Isotope Studies (옥천 금-은광상의 생성환경: 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.153-163
    • /
    • 2013
  • The Ogcheon Au-Ag deposit consists of two quartz veins that fill the NE or NW-trending fissures in the metasedimentary rocks of unknown age. The quartz veins occur mainly in the massive type with partially breccia and cavity. They can be found along the strike for about minimum 50 m and varied in thickness from 0.1 to 0.3 m. The mineralogy of quartz veins from the Ogcheon deposit is mainly composed of hydrothermal alteration minerals such as pyrite, quartz, sericite, chlorite, clay minerals and sulfides including pyrite, pyrrhotite, arsenopyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of mineralization range from 184 to $362^{\circ}C$ and from 0.0 to 6.6 wt.% eq. NaCl, respectively. These suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur(${\delta}^{34}S$: 0.4~8.4‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen(${\delta}^{18}O$: 4.9~12.1‰) and hydrogen(${\delta}D$: -92~-74‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Ogcheon deposit and then overlapped to some degree with another type of meteoric water during mineralization.

A Study on Mineralization of Anyang Feldspar Ore Deposit (안양장석광상의 광화작용에 관한 연구)

  • Park, Boo Seong;Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.11-28
    • /
    • 1994
  • The Anyang Feldspar Mine is located in Seoksu Dong, Anyang City, Kyeonggi Do, Korea and has a long exploitation record that is once produced high grade sodium feldspars, for glaze. Geologically, This area is mainly composed of Mesozoic Jurassic biotite granite (Anyang granite) which intruded Precambrian Kyeonggi Gneiss Complex outcroped near the mining area. The deposit is localized on the southwest hill side of Anyang granite batholith and is confined in hydrothemal alteration zone formed by sodium-rich alkali hydrothermal fluids along the fractures of leucocratic granite showing later differentiation facies in the biotite granite. The hydrothermal alteration is characterized by albitization, sericitization, and desilication. The microscopic observation and EPMA, XRD analysis of the feldspar ores show that major minerals are albite and quartz and accessory minerals are orthoclase and sericite, and they are rarely associated with perthite, fluorite, zircon, kaolinite, molybdenite, microcline and iron-oxide. In the REE pattern, the strong negative Eu anomalies of the feldspar ores indicate the influence of feldspar fractionation and show similiar pattern of the host leucocratic granite. The filling temperature of quartz crystals in ore zone ranges from $276^{\circ}C$ to $342^{\circ}C$, and it is inferred that the alteration occurred by the hypothermal solution.

  • PDF