DOI QR코드

DOI QR Code

Genesis of the Ogcheon Gold-silver Deposit in Republic of Korea: Ore Minerals, Fluid Inclusion and Stable Isotope Studies

옥천 금-은광상의 생성환경: 광석광물, 유체포유물 및 안정동위원소 연구

  • Yoo, Bong Chul (Mineral Resources Research Department, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 광물자원연구실)
  • Received : 2013.03.02
  • Accepted : 2013.04.06
  • Published : 2013.04.28

Abstract

The Ogcheon Au-Ag deposit consists of two quartz veins that fill the NE or NW-trending fissures in the metasedimentary rocks of unknown age. The quartz veins occur mainly in the massive type with partially breccia and cavity. They can be found along the strike for about minimum 50 m and varied in thickness from 0.1 to 0.3 m. The mineralogy of quartz veins from the Ogcheon deposit is mainly composed of hydrothermal alteration minerals such as pyrite, quartz, sericite, chlorite, clay minerals and sulfides including pyrite, pyrrhotite, arsenopyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of mineralization range from 184 to $362^{\circ}C$ and from 0.0 to 6.6 wt.% eq. NaCl, respectively. These suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur(${\delta}^{34}S$: 0.4~8.4‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen(${\delta}^{18}O$: 4.9~12.1‰) and hydrogen(${\delta}D$: -92~-74‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Ogcheon deposit and then overlapped to some degree with another type of meteoric water during mineralization.

옥천 금-은광상은 시대미상의 변성퇴적암류내에 발달된 NE 또는 NW 계열의 열극대를 충진한 2개조의 석영맥으로 구성된 열수맥상광상이다. 본 광상의 석영맥은 주로 괴상으로 산출되며 일부 각력상 및 정동구조가 관찰되고 연장성은 최소 50 m, 맥폭은 0.1에서 0.3 m 정도이다. 이들 석영맥에서 산출되는 광물은 황철석, 석영, 견운모, 녹니석 및 점토광물로 구성된 열수변질광물과 황철석, 자류철석, 유비철석, 섬아연석, 황동석 및 방연석으로 구성된 황화광물이 관찰된다. 유체포유물 자료에 의하면, 광화시기 광석광물의 침전과 관련된 균일화온도와 염농도는 각각 $184{\sim}362^{\circ}C$, 0.0~6.6 wt.% NaCl 로서 광화유체가 천수의 혼입에 의한 냉각과 희석작용이 있었음을 지시한다. 황(${\delta}^{34}S$: 0.4~8.4‰)의 기원은 주로 화성기원과 일부 모암내의 황에서 유래된 것으로 해석된다. 산소(${\delta}^{18}O$: 4.9~12.1‰)와 수소(${\delta}D$: -92~74‰) 동위원소값의 자료로 볼 때, 이 광상의 광화유체는 마그마 기원 또는 천수 기원의 유체로 생각되며 광화작용이 진행됨에 따라 기원이 다른 천수의 혼입이 작용한 것으로 해석할 수 있다.

Keywords

References

  1. Barret, T.J. and Anderson, G.M. (1988) The solubility of sphalerite and galena in 1-5 m NaCl solutions to $300^{\circ}C$. Geochim. Cosmochim.Acta., v.52, p.813-820. https://doi.org/10.1016/0016-7037(88)90353-5
  2. Bodnar, R.J. (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-TX properties of inclusion fluids. Econ. Geol., v.78, p.535-542. https://doi.org/10.2113/gsecongeo.78.3.535
  3. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for $H_2O$-NaCl fluid inclusions: in De Vivo, B. and Frezzotti, M.L. eds., Fluid inclusions in minerals: Method and applications: Short Course International Mineralogical Assoc., p.117-130.
  4. Gammons, C.H. and Williams-Jones, A.E. (1995) The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at $300^{\circ}C$: New data on the stability of Au(I) chloride complexes in hydrothermal fluids. Geochim. Cosmochim. Acta., v.59, p.3453-3468. https://doi.org/10.1016/0016-7037(95)00234-Q
  5. Kim, D.H., Chang, T.W., Kim, W.Y. and Hwang, J.H. (1978) Explanatory text of the geological map of Ogcheon sheet. Korea Research Institute of Geoscience and Mineral Resources. 21p.
  6. Korea Mining Promotion Corporation (1990) Deposits of the Korea, p. 172-173.
  7. KORES, (2012) http://www.kores.net/mcinfo/informineral_l.do,
  8. Kwon, S.T. and Lee, D.H. (1992) Petrology and geochemistry of the Ogcheon metabasites in Poun, Korea. Jour. Petrol. Soc. Korea, v.1, p.104-123.
  9. Lee, J.H. Kwon, S.H. Park, Y.D. Kwon, S.T. and Park, S.H. (2001) Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, v.20, p.850-867. https://doi.org/10.1029/2000TC001267
  10. Lim, S.B., Chun, H.Y., Kim, Y.B., Lee, S.R. and Kee, W.S. (2007) Geological ages and stratigraphy of the metasedimentary strata in Hoenam-Miwon area, NW Okcheon belt. Journal of the Geological Society of Korea, v. 43, p. 125-150.
  11. Matsuhisa, Y. Goldsmith, R. and Clayton, R.N. (1979) Oxygen isotope fractionation in the system quartzalbite- anorthite-water. Geochimica et Cosmochimica Acta, v. 43, p. 1131-1140. https://doi.org/10.1016/0016-7037(79)90099-1
  12. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. H.L. Barnes. Geochemistry of hydrothermal ore deposits. 2nd ed, Wiley-Interscience. New York. p.509-567.
  13. Shepherd, T.J. Rankin, A.H. and Alderton, D.H.M. (1985) A practical guide to fluid inclusion studies. Blackie, 239p.
  14. Yoo, B.C., Lee, J.K., Lee, G.J. and Lee, H.K. (2008) Fluid inclusion and stable isotope studies of Namseong and Manmyeong Au-Ag deposits. Conference of the geological science & technology of Korea, p.199.
  15. Yoo, B.C and White, N.C. (2013) Mineralogy, fluid inclusion and stable isotope constraints on the genesis of the Namseong Au-Ag deposit, Republic of Korea. Geochemical Journal (in print).
  16. Yoo, B.C. and You, B.W. (2011) Geopung copper deposit in Ogcheon, Chungcheongbuk-do: Mineralogy, fluid inclusion and stable isotope studies. Econ. Environ. Geol., v.44, p.193-201. https://doi.org/10.9719/EEG.2011.44.3.193