• 제목/요약/키워드: Ordinary Least Squares

검색결과 204건 처리시간 0.025초

A Study on the Impact of Sport Industry on Economic Growth: An Investigation from China

  • He, Yugang
    • Journal of Sport and Applied Science
    • /
    • 제2권2호
    • /
    • pp.1-10
    • /
    • 2018
  • Prior literature has posited that the sport industry has been effective method to drive the economic growth. Given the rationale, this study sets China as a research object with a quarterly data from the first quarter of 2003 to the fourth quarter of 2017 to explore how the sport industry affects economic growth. This study employed Johansen cointegration test and dynamic ordinary least squares as methods for an empirical analysis. The input of sport industry, the labor input, the capital input, and the economic growth are used as research variables. The results show that there is a long-run relationship among them. Johansen cointegration test's estimation indicated that 1% increase in the input of sport industry will lead to 0.064% increase in economic growth. Dynamic ordinary least squares' estimation showed that whenever in the one lead, in the one lag and in the present period, the input of sport industry always poses a positive effect on economic growth. Labor input also has a positive effect on economic growth. The capital input has a negative effect on economic growth. Finally, even though the input of sport industry has a positive effect on economic growth, its impact on economic growth is relative weak.

위성을 이용한 Total Least Squares 기반 신호원 측위 알고리즘 (The Geolocation Based on Total Least Squares Algorithm Using Satellites)

  • 박영미;조상우;전주환
    • 한국통신학회논문지
    • /
    • 제29권2C호
    • /
    • pp.255-261
    • /
    • 2004
  • Geoloaction이란 다수의 위성을 이용하여 지구상에 존재하는 송신기의 위치를 결정하는 문제이다. 본 논문에서는 한 기의 정지제도 위성과 한 기의 저궤도 위성을 이용하여 위성에 수신된 신호를 처리하여 얻은 도래 시간차(time difference of arrival or TDOA) 측정치로부터 정적인 송신기의 위치를 추정하는 문제를 다룬다. 위성들의 부정확한 위치 정보와 잡음이 더해진 도래 시간차 측정치를 이용한 geolocation 문제의 경우, 정확한 위치 추정치를 얻기 위하여 total least squares (TLS) 알고리즘으로 접근한다. Monte-Carlo 실험을 통해 기존의 least squares (LS) 방법과 비교함으로써 제안한 TLS 알고리즘의 성능을 검증하였다.

Estimation of Seasonal Cointegration under Conditional Heteroskedasticity

  • Seong, Byeongchan
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.615-624
    • /
    • 2015
  • We consider the estimation of seasonal cointegration in the presence of conditional heteroskedasticity (CH) using a feasible generalized least squares method. We capture cointegrating relationships and time-varying volatility for long-run and short-run dynamics in the same model. This procedure can be easily implemented using common methods such as ordinary least squares and generalized least squares. The maximum likelihood (ML) estimation method is computationally difficult and may not be feasible for larger models. The simulation results indicate that the proposed method is superior to the ML method when CH exists. In order to illustrate the proposed method, an empirical example is presented to model a seasonally cointegrated times series under CH.

Two-step LS-SVR for censored regression

  • Bae, Jong-Sig;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권2호
    • /
    • pp.393-401
    • /
    • 2012
  • This paper deals with the estimations of the least squares support vector regression when the responses are subject to randomly right censoring. The estimation is performed via two steps - the ordinary least squares support vector regression and the least squares support vector regression with censored data. We use the empirical fact that the estimated regression functions subject to randomly right censoring are close to the true regression functions than the observed failure times subject to randomly right censoring. The hyper-parameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation function. Experimental results are then presented which indicate the performance of the proposed procedure.

A Study on the Optimum Scheme for Determination of Operation Time of Line Feeders in Automatic Combination Weighers

  • Keraita James N.;Kim Kyo-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1567-1575
    • /
    • 2006
  • In an automatic combination weigher, the line feeders distribute the product to several weighing hoppers. The ability to supply appropriate amount of product to the weighing hoppers for each combination operation is crucial for the overall performance. Determining the right duration of operating a line feeder to supply a given amount of product becomes very challenging in case of products which are irregular in volume or specific gravity such as granular secondary processed foods. In this research, several schemes were investigated to determine the best way for a line feeder to approximate the next operating time in order to supply a set amount of irregular goods to the corresponding weighing hopper. Results obtained show that a weighted least squares method (WLS) employing 10 data points is the most effective in determining the operating times of line feeders.

A Generalized Partly-Parametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.401-409
    • /
    • 2006
  • We consider a generalized partly-parametric additive risk model which generalizes the partly parametric additive risk model suggested by McKeague and Sasieni (1994). As an estimation method of this model, we propose to use the weighted least square estimation, suggested by Huffer and McKeague (1991), for Aalen's additive risk model by a piecewise constant risk. We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least squares method.

  • PDF

결합예측 방법을 이용한 인터넷 트래픽 수요 예측 연구 (A Study on Internet Traffic Forecasting by Combined Forecasts)

  • 김삼용
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1235-1243
    • /
    • 2015
  • 최근 들어 ICT 분야의 발달에 따라 데이터 사용량의 급격한 증가로 인터넷 트래픽 사용량 예측은 중요성은 강조되고 있다. 이러한 예측치를 적절한 트래픽 관리와 제어를 위한 계획 수립에 도움을 준다. 본 논문은, 5분 단위의 인터넷 트래픽 자료를 이용하여 결합 예측 모형을 제안하고자 한다. 이에 대하여 시계열의 대표적인 3개 모형인 Seasonal ARIMA, Fractional ARIMA(FARIMA), Taylor의 수정된 Holt-Winters 모형을 적용하였다. 모형 간 결합 예측 방법으로 예측치 간의 SA(Simple Average) 결합 예측 방법과 OLS(Ordinary Least Square)를 이용한 결합방법, ERLS(Equality Restricted Least Squares)를 이용한 결합 예측 방법, Armstrong(2001)이 제안한 MSE 기반 결합 예측 방법을 사용한다. 이에 따른 결과로서 3시간에서의 예측은 Seasonal ARIMA가 선택된 반면, 6시간 이후 예측에서는 결합 예측 방법이 좋은 예측 성능을 보여준다.

Pitfalls in the Application of the COTE in a Linear Regression Model with Seasonal Data

  • Seuck Heun Song;YouSung Park
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.353-358
    • /
    • 1997
  • When the disturbances in the linear repression medel are generated by a seasonal autoregressive scheme the Cochrane Orcutt transformation estimator (COTE) is a well known alternative to Generalized Least Squares estimator (GLSE). In this paper it is analyzed in which situation the Ordinary Least Squares estimator (OLSE) is always better than COTE for positive autocorrelation in terms of efficiency which is here defined as the ratio of the total variances.

  • PDF

Consistency and Bounds on the Bias of $S^2$ in the Linear Regression Model with Moving Average Disturbances

  • Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.507-518
    • /
    • 1995
  • The ordinary least squares based estiamte $S^2$ of the disturbance variance is considered in the linear regression model when the disturbances follow the first-order moving-average process. It is shown that $S^2$ is weakly consistent estimate for the disturbance varaince without any restriction on the regressor matrix X. Also, simple exact bounds on the relative bias of $S^2$ are given in finite sample sizes.

  • PDF

An Asymptotic Property of Multivariate Autoregressive Model with Multiple Unit Roots

  • Shin, Key-Il
    • Journal of the Korean Statistical Society
    • /
    • 제23권1호
    • /
    • pp.167-178
    • /
    • 1994
  • To estimate coefficient matrix in autoregressive model, usually ordinary least squares estimator or unconditional maximum likelihood estimator is used. It is unknown that for univariate AR(p) model, unconditional maximum likelihood estimator gives better power property that ordinary least squares estimator in testing for unit root with mean estimated. When autoregressive model contains multiple unit roots and unconditional likelihood function is used to estimate coefficient matrix, the seperation of nonstationary part and stationary part of the eigen-values in the estimated coefficient matrix in the limit is developed. This asymptotic property may give an idea to test for multiple unit roots.

  • PDF