• Title/Summary/Keyword: Optimum forming condition

Search Result 107, Processing Time 0.022 seconds

A Study on the Rapid Prototyping using Automatic Design Program (자동설계 프로그램을 이용한 급속성형에 관한 연구)

  • 이승수;김민주;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • A study is the selection of optimum forming condition for RP system. We develop the Automatic design program for machine element using visual LISP program in AutoCAD. Automatic design program reduces the required time for feedback between design and manufacturing of workpiece. Also we investigate the relationship between circularity of 3D solid model and circularity of rapid prototype using RP system and we will find optimum forming condition in RP system.

A Study on the Rapid Prototyping using Automatic Design Program (자동설계 프로그램을 이용한 급속성형에 관한 연구)

  • 김세민;이승수;김민주;주만식;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.365-370
    • /
    • 2001
  • This study is the selection of optimum forming condition for RP system using ADS. Program using ADS reduces the required time for feedback between design and manufacturing of workpiece. When we produce rapid prototype using RP system, we investigate the relationship between Facetres in system variable number of AutoCAD and circularity of rapid prototype, and we will find optimum forming condition in RP system.

  • PDF

A Study on prototyping and Automatic Design Programing using VisualLISP (VisualLISP을 이용한 자동설계프로그래밍과 시작품 제작에 관한 연구)

  • 김태호;이승수;김민주;박정보;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.996-999
    • /
    • 2001
  • This study is the election of optimum forming condition for RP system using ADS. Program using ADS reduces the required time for feedback between design and manufacturing of workpiece. When we produce rapid prototype using RP system, we investigate the relationship between Facetres in system variable number of AutoCAD and circularity of rapid prototype, and we will find optimum forming condition in RP system.

  • PDF

A Study on the selection of an optimum modelling in RP system by ADS (ADS에 의한 RP시스템의 최적성형조건 선정에 관한 연구)

  • Kim, M.J.;Lee, S.S.;Park, M.S.;Kim, S.K.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.158-163
    • /
    • 2001
  • This study is the selection of optimum forming condition for RP system using ADS. Program using ADS reduces the required time for feedback between design and manufacturing of workpiece. When we produce rapid prototype using RP system, we investigate the relationship between Facetres in system variable number of AutoCAD and roundness of rapid prototype, and we will find optimum forming condition in RP system.

  • PDF

Note-PC Case Fabrication by Magnesium Alloy Sheet Press Forming (마그네슘 판재 프레스 성형에 의한 노트PC 케이스 제작)

  • Kim, H.K.;Woo, S.S.;Lee, J.;Heo, Y.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.337-340
    • /
    • 2008
  • Magnesium alloy is expected to be widely used for mobile electronic appliances as well as automobile parts for its lightweight and EMI-shielding characteristics. In the present investigation, a Note-PC upper case made of magnesium alloy AZ31 sheet was developed by using the press forming technology at elevated temperature. Considering the press forming process and the formability of magnesium alloy sheet, the case shape and the press die was designed. The optimum forming condition was experimentally examined. Then the as-received magnesium alloy sheet was press-formed into the designed case shape under the optimum forming condition.

  • PDF

The Effect of Pressure-time Condition Affect in Properties of Superplastic Formed part (압력 조건이 초소성 성형품의 성질에 미치는 영향)

  • Lee, Yeong-Seon;Lee, Jeong-Hwan
    • 연구논문집
    • /
    • s.29
    • /
    • pp.185-194
    • /
    • 1999
  • The shape and thickness distribution according to the pressure-time curve were carried out using the FEM and experiment. Also, mechanical properties were investigated. The square cup parts have been formed with pressure-time curve generated by result of analysis. The tensile strength and elongation have been investigated according to applied pressure conditions using the tensile test specimen obtained from the superplastic formed cup. We can use to predict the shape of formed part under the applied pressure using the FEM analysis. In the case of optimum pressure condition, the thickness distribution and mechanical properties were improved. From this study, we can find the important of optimum pressure-time condition. We have investigated about the forming of airplane part and fuel tank for motorcycle. If the applied load used in boundary conditions was appropriate, the simulation result coincides with the formed part. However, it is very difficult to define the pressure condition in complicated shape. Thus, it is need to develop the optimum pressure condition for superplastic forming.

  • PDF

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (I) - On the Optimum Manufacturing Condition of Composites - (합판대용(合板代用) 박판상(薄板狀) 복합재(複合材) 제조(製造)에 관(關)한 연구(硏究) (I) - 복합재(複合材) 제조(製造)의 최적조건(最適條件)에 관(關)하여 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.55-69
    • /
    • 1995
  • The primary objective of this research was to investigate optimum manufacturing condition of thin composite panels composed of sawdust, polyethylene film and polypropylene net. At the study the experiment was designed to make thin board in which sawdust offers effectiveness as core composing material, polyethylene as adhesive with added urea resin, and polypropylene as stiffness and flexibility in the composition panel. 100 types of thin composite panels were manufactured according to press-lam and mat-forming process of various hot pressing conditions(pressure, temperature and time). They were tested and compared with control boards on bending properties(MOR, MOE, SPL, WML), internal bond strength, thickness swelling, linear expansion and water absorption. At the same time the visual inspections of each types of panels were accomplished. The physical and mechanical properties of composite types passed by visual inspection were analyzed by Tukey's studentized range test. From the statistical analysis, the optimum manufacturing condition of thin composite panels were selected. Compared with two manufacturing processes, mat-forming process performed better than press-lam process in all tested properties. The optimum manufacturing conditions resulted from the experiment and statistical analysis were able to determine as following: the press temperature was shown the most good result at 130$^{\circ}C$ in mat forming process and 140$^{\circ}C$ press lam process, the press time 4 min in both processes, but the press pressure was 25-10kg/$cm^2$ in mat forming and 15k/$cm^2$ press lam process.

  • PDF

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (II) - Development of Thin Composite by Composition Type Applied to Optimum Manufacturing Condition - (합판(合板) 대용(代用) 박판상(薄板狀) 복합재(複閤材) 제조(製造)에 관(關)한 연구(硏究) (II) -최상제조조건(最適製造條件)을 적용(適用)한 구성형태별(構成形態別) 박판상(薄板狀) 복합재(複閤材) 개발(開發)-)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.74-84
    • /
    • 1995
  • Eight types of thin composite panels were manufactured by press-lam and mat-forming process applied to optimum manufacturing condition, studied in former first research by author (1995). They were tested and compared with control boards on dimensional stability, internal bond strength, tensile strength, Screw withdrawal strength, and bending properties. These thin composite panels manufactured by mat-forming process were generally superior to those by press-lam in dimensional stability and mechanical properties. In the dimensional stability and mechanical properties of thin composite panels manufactured by mat-forming process, the thin composite panels (A and E type) composed of particle or sawdust core and veneer face with polyethylene film, were as good as those of common plywood (control board). Internal bond strength showed highest value in the thin composite panel(D type) which composed of particle core and polypropylene screen face with polyethylene film. The thin composite panels(G and H type) composed of sawdust or particle core and polypropylene screen face with polyethylene film by press-lam and mat-forming process, showed most highest value in dimensional stability and water absorption.

  • PDF

Analysis of Superplastic Forming Processes U sing Finite Element Method (유한요소법을 이용한 초소성 성형공정 해석)

  • 홍성석;김민호;김용환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1411-1421
    • /
    • 1995
  • A rigid visco-plastic finite element method has been developed for modeling superplastic forming processes. The optimum pressure-time relationship for a target strain rate and thickness distributions was predicted using two-node line element based on membrane approximation for plane strain and axisymmetric condition. Analysis of superplastic forming was carried out using the developed program and the numerical results were compared to the values available in the literature for plane strain problems. For description of the contact between the dies and sheet, the direct projection method was applied to the complicated problem and the validity of the scheme was tested. Experiments for the various geometries such as hemisphere and cone were performed with the developed forming machine using the calculated optimum pressure-time curves. Comparison between analysis and experiments showed good agreement.

Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes (초소성 성형/확산접합 공정의 유한요소 해석)

  • 홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 1996
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted by two-node line elements based on the membrane approximation for plane strain. Material behavior during SPF/DB of the integral structures having complicated shapes was investigated. The tying condition is employed for the analysis of inter-sheet contact problems. A movement of rib structure is successfully predicted during the forming.

  • PDF