• Title/Summary/Keyword: Optimum efficiency

Search Result 2,726, Processing Time 0.029 seconds

Preparation of Matte with Pyrite and Chalcopyrite as sulfur source and Leaching behaviour (황(黃) 원료(原料)로서 pyrite와 chalcopyrite를 사용(使用)한 matte 상(相)의 제조(製造) 및 침출특성(浸出特性))

  • Park, Kyung-Ho;Nam, Chul-Woo;Chang, Jong-Sin;Ahan, Sung-Chen;Kim, Hong-In
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Artificial mattes were prepared with adding pyrite or chalcopyrite as sulfur sources with Cu-Ni-Co-Fe alloy. The major phases identified by X-ray diffraction pattern were $(FeSi)_9S_8$, $CuFeS_2$, FeS, $Co_4S_3$, $Ni_3S_2$ and $Cu_2S$ for both mattes, and the matte prepared by adding chalcopyrite showed the higher peak of $Cu_2S$ due to high content of copper. Under optimum conditions, more than 95% copper, 90% nickel and 90% cobalt were extracted into leaching solution and sulfur concentration in the mattes did not much affect the leaching efficiency of the metals. The increase of the amount of pyrite or chalcopyrite added decreased pH in leaching solution and increased the concentration of iron ion dissolved in the leaching solution and the amount of residue.

Effect of NaOCl and Gold Plating Additive on the Gold Recovery in Cyclone Electrolytic Cell from Solution for Stripping Gold of PCB by Cyanide (시안을 이용한 PCB 금 박리용액으로부터 사이클론 전해조에서의 금 회수거동에 미치는 차아염소산나트륨과 금 도금첨가제의 영향)

  • Jo, Hyeonji;Yoo, Kyoungkeun;Bae, Mooki;Sohn, Jeongsoo;Yang, Donghyo;Kim, Sookyung
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.88-94
    • /
    • 2017
  • The recovery of gold in cyclone type electrolytic cell was conducted from solution for stripping gold of PCB by cyanide. The electrolytic recovery behaviors of gold was investigated by reaction time and addition of electrolytic sodium hypochlorite (NaOCl) and gold plating additive (KG-120). Because the electrolysis generated NaOCl reacted with the cyanide in the leachate by alkaline chlorination, more than 99% of the cyanide was removed at a $NaOCl(g)/CN^-(g)$ ratio of 1.0. When NaOCl was added during the recovery of the gold from cyanide leachate in the cyclone electrolytic cell, the recovery of gold was 98% at the ratio of $NaOCl(g)/CN^-(g)$ from 0.5 to 2.5 in 480 minutes and decreased rapidly over the ratio of 3.0. Gold was recovered more than 99% by adding 1.5 and 4.5%(v/v) of KG-120 with NaOCl in 480 minutes. In particular, when the concentration of KG-120 was 3.5 and 4.5%(v/v), more than 96% of gold was recovered within 240 minutes and the initial recovery rate was relatively faster. The optimum concentration of KG-120 is 3.5%(v/v) considering the economic feasibility and efficiency.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

Cultural Practices Affecting the Growth and Tuber Yield of Yam Bean (Pachyrhizus erosus L.) (얌빈 생육과 괴경 수량에 영향을 미치는 재배요인)

  • Nam, Hyo-Hoon;Kwon, Jung-Bai;Lee, Joong-Hwan;Son, Chang-Ki;Seo, Young-Jin
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This study was conducted to establish a domestic cultivation system of a newly introduced yam bean (Pachyrhizus erosus L.). Growth and yield were investigated in response to various cultural practices, such as seedling raising, planting distance, pinching, and flower pruning. Optimum conditions for raising of seedling were an average temperature of $22^{\circ}C$ for 30 days. Considering of the raising efficiency and the convenience of transplanting, 128 cells per tray was a suitable size. When pinching at a height of 120 cm from late July to early August, yield increased by 22% compared to no pinching. Flower pruning between late August and early September increased the number of tubers and tuber yield by 32% in comparison with no flower pruning. Yam bean seedlings planted at $50cm{\times}30cm$ spacing resulted in 30% yield increase as compared to wider spacing of $100cm{\times}30cm$. Our results thus suggested that the optimal combination of cultural practices ($50{\times}30cm$ planting distance, pinching at 120 cm height, and one time of flower pruning) increase profitability by 107%. All these results suggest high possibility of yam bean as a new income crop in Korea.

Development of embedded type antenna structure with NFC and WPC complex function (NFC 와 WPC 복합기능의 삽입형 안테나 복합체 개발)

  • Park, Rog-gook;Lee, Deok-soo;Jang, Jeong-sun
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.59-68
    • /
    • 2018
  • The objective of this study is to develop an embedded antenna structure with NFC and WPC composite functions. By selecting stable materials, the optimal component ratio of the polymer sheet was determined. The low cost embedded winding method compared to the existing FPCB was devised. During the winding process, characterization and process technology were developed. We also fabricated a ferrite mold to process the WPC grooves and developed the process technology for optimizing the WPC antenna. The following conclusions were obtained. (1) Optimum composition ratio was derived as Fe 87.5%, Si 7%, Al 5.5% and selected as the final material. (2) Optimal sheet conditions were derived from the experimental evaluation method and the experimental design method through the combination test of the optimized sheet and the conventional mass production FPCB. (3) According to coil diameter and inner diameter, Q value fluctuation, resistance value and efficiency fluctuation are obtained. Therefore, the most suitable coil condition is selected and Rx matching is performed. (4) The EMV load modulation test and the cognitive distance test of the polymer sheet and the ferrite sheet showed that the recognition distance of the polymer sheet at 1k and 4K was 32-33 mm and the recognition distance of the ferrite sheet at the same condition was 30-31 mm.

Mass Rearing Conditions for the Production of Gryllus bimaculatus De Geer (Orthoptera: Gryllidae) (쌍별귀뚜라미(메뚜기목: 귀뚜라미과)의 실내 대량사육 조건)

  • Kim, Cheol Hak;Park, Se Yeon;Lee, Yong Cheol;Kim, Jun Ho;Byun, Bong-Kyu
    • Korean journal of applied entomology
    • /
    • v.58 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • This study was evaluated to increase the production efficiency of Gryllus bimaculatus De Geer, which are recently increasing attention as industrial insects in Korea. In this study, the hatching rate and larval period were investigated along with temperature and humidity, as well as the survival rate and ovipositional temperatures along with rearing density. The optimum relative humidity for hatching was highest at 90%, which shows the hatching rate of 90%. The highest hatching rate was 98.3% at $20^{\circ}C$. The hatching period was shortest at $35^{\circ}C$ incubation, which shows 7.1 days in average. The survival rate at 3,000-20,000 individuals in the breeding container was 34-18% after rearing for 35 days. In the effect test of feeding vegetables, the survival rate was 1.8 times and the biomass weight 2.5 times higher than that of normal individuals respectively. The number of laying eggs by temperature was highest at $25^{\circ}C$, which shows 1,710 eggs after reading for 30 days.

Formation of Ni / Cu Electrode for Crystalline Si Solar Cell Using Light Induced Electrode Plating (광유도 전해 도금법을 이용한 결정질 실리콘 태양전지용 Ni/Cu 전극 형성)

  • Hong, Hyekwon;Park, Jeongeun;Cho, Youngho;Kim, Dongsik;Lim, Donggun;Song, Woochang
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • The screen printing method for forming the electrode by applying the existing pressure is difficult to apply to thin wafers, and since expensive Ag paste is used, it is difficult to solve the problem of cost reduction. This can solve both of the problems by forming the front electrode using a plating method applicable to a thin wafer. In this paper, the process conditions of electrode formation are optimized by using LIEP (Light-Induced Electrode Plating). Experiments were conducted by varying the Ni plating bath temperature $40{\sim}70^{\circ}C$, the applied current 5 ~ 15 mA, and the plating process time 5 ~ 20 min. As a result of the experiment, it was confirmed that the optimal condition of the structural characteristics was obtained at the plating bath temperature of $60^{\circ}C$, 15 mA, and the process time of 20 min. The Cu LIEP process conditions, experiments were conducted with Cu plating bath temperature $40{\sim}70^{\circ}C$, applied voltage 5 ~ 15 V, plating process time 2 ~ 15 min. As a result of the experiment, it was confirmed that the optimum conditions were obtained as a result of electrical and structural characteristics at the plating bath temperature of $60^{\circ}C$ and applied current of 15 V and process time of 15 min. In order to form Ni silicide, the firing process time was fixed to 2 min and the temperature was changed to $310^{\circ}C$, $330^{\circ}C$, $350^{\circ}C$, and post contact annealing was performed. As a result, the lowest contact resistance value of $2.76{\Omega}$ was obtained at the firing temperature of $310^{\circ}C$. The contact resistivity of $1.07m{\Omega}cm^2$ can be calculated from the conditionally optimized sample. With the plating method using Ni / Cu, the efficiency of the solar cell can be expected to increase due to the increase of the electric conductivity and the decrease of the resistance component in the production of the solar cell, and the application to the thin wafer can be expected.

Changes in Isoflavone Contents and Physicochemical Properties of Soybean Leaf Extract by Extraction Conditions (추출조건에 따른 콩잎 추출물의 이소플라본 함량 및 이화학적 특성)

  • Yoon, Jeong-Ah;Kwun, Se-Young;Park, Eun-Hee;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.64-68
    • /
    • 2019
  • To utilize soybean leaf, which is a waste product in soybean production, as a value-added food material, this study aimed to investgate the extraction efficiency of isoflavone from soybean leaf and to characterize physicochemical properties of the extract. Maximum isoflavone content of $59.74{\pm}4.54mg/l$ was obtained from soybean leaf extracted at $90^{\circ}C$ for 12 h. DPPH (1,1-diphenyl-2-pricylhydrazyl) radical-scavenging activity and total polyphenol contents reached maximum levels of $67.26{\pm}3.64%$ and $1,688.68{\pm}97.37{\mu}g/ml$ chlorogenic acid equivalent, respectively. Based on the contents of isoflavone and total polyphenol, and DPPH radical-scavenging activity, optimum extraction conditions for soybean leaf using water as solvent were $90^{\circ}C$ and 12 h.

Study for Seperation Process of Copper from the Low-grade Copper Ore by Hydrometallrugical Process (저품위 동광으로부터 습식제련공정에 의한 구리의 분리 공정 연구)

  • Shin, Dong Ju;Joo, Sung-Ho;Lee, Dongseok;Jeon, Ho-Seok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.57-66
    • /
    • 2021
  • In this study, we attempted to separate and recover Cu from low-grade copper ore by a hydrometallurgical process. The leaching sample obtained after crushing and sieving by 0.355 mm of low-grade copper ore contained 1.5% Cu, 4.7% Fe, 1.0% Mn, and 0.3% Zn. The Cu in the oxide ore was very well leached into sulfuric acid and 97% Cu leaching efficiency was achieved at 80℃ and 3 M sulfuric acid (H2SO4). From the leaching solution, Cu was separated by solvent extraction from Fe, Mn, and Zn using LIX984N. The separation tendency between Cu and other metals was confirmed through the distribution ratio and separation factor. By plotting the McCabe-Thiele Diagram, the optimum condition for recovering Cu is 5 vol.% LIX984N, 2-stage counter-current solvent extraction, and an O/A ratio of 0.5. Using this method, 99% of the Cu was extracted and a CuSO4 solution was finally obtained that contained 1.6 g/L Cu after the stripping process using 2 M H2SO4.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.