DOI QR코드

DOI QR Code

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation

지반 변형 대응형 말뚝 기초의 거동 특성 분석

  • Lee, Junwon (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Shin, Sehee (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Lee, Haklin (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Kim, Dongwook (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Lee, Kicheol (Department of University Innovation, Incheon National University)
  • Received : 2020.10.19
  • Accepted : 2020.11.04
  • Published : 2020.12.30

Abstract

As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

세계적으로 대규모 인프라 구조 건설 시장이 확대됨에 따라 극한지 및 극서지와 같은 극한 환경에서의 토목 구조물 시공이 계획 혹은 시공 중에 있다. 이에 따라 구조물의 지지력 확보를 위한 말뚝 기초의 시공이 필수적이나 극한지 및 극서지의 지반 변형 가능성으로 인해 말뚝 기초의 안정성 및 기능 상실이 우려된다. 따라서 본 연구에서는 새로운 형식의 말뚝 기초를 개발함으로써 지반 변형에 대응하고자 하며, 극한지 및 극서지에서 발생 가능한 지반 변형을 크게 융기 및 침하로 구분하였다. 지반 변형 대응형 말뚝은 강관 말뚝 내부에 수축 및 팽창이 가능한 실린더가 삽입된 형태로 융기 및 침하 과정에서 실린더의 거동에 따른 말뚝 영향을 수치해석적으로 분석하였다. 수치해석 결과 지반 융기는 말뚝의 과도한 인장응력을 발생시켰으며, 실린더의 팽창 조건은 말뚝에 작용하는 인장 응력을 분담해 주어 전체적으로 말뚝에 작용하는 축 응력을 감소시켰다. 지반 침하는 부주면 마찰력 발생에 따른 말뚝의 압축응력을 증가시켜 주었는데, 실린더는 중립점 이하에 위치하여 수축 거동 시 최적의 효율을 보여주었다. 하지만 지반 변형 대응형 말뚝 시공 시 수축 및 팽창량은 상부 구조체의 허용 변위 범위를 준수하여야 하며, 설계 시 이에 따른 고려가 필요할 것으로 판단된다.

Keywords

References

  1. Aljorany, A. N., Ibrahim, S. F. and Al-Adly, A. I. (2014), "Heave Behavior of Granular Pile Anchor-Foundation System", Journal of Engineering, Vol.20, No.4, pp.1-22.
  2. Bae, W. S., Oh, S. W. and Shin, B. W. (2006), "Centrifugal Model Test on the Behaviors of Composite Ground Improved with Sand Compaction Piles-Focused on Stress Concentration of SCPs-", Journal of The Korean Society of Civil Engineers C, Vol.26, No.1C, pp.19-24. (in Korean)
  3. Chen, R. P., Zhou, W. H. and Chen, Y. M. (2009), "Influences of Soil Consolidation and Pile Load on the Development of Negative Skin Friction of a Pile", Computers and Geotechnics, Vol.36, No.8, pp.1265-1271. https://doi.org/10.1016/j.compgeo.2009.05.011
  4. Feng, Z., Hu, H., Zhao, R., He, J., Dong, Y., Feng, K., Zhao, Y. and Chen, H. (2019), "Experiments on Reducing Negative Skin Friction of Piles", Advances in Civil Engineering, Vol.2019.
  5. Hong, S. W. (2012), "Characteristics of Negative Skin Friction of Foundation Pile and Construction Management by Experimental Field Test", International journal of highway engineering, Vol.14, No.3, pp.41-48. (in Korean) https://doi.org/10.7855/IJHE.2012.14.3.041
  6. Hong, W. P., Song, Y. S. and Kim, D. U. (2004), "The Behavior of Sheet Piling Walls supported by Anchors in Soft Ground", Journal of the Korean Geotechnical Society, Vol.20, No.4, pp.65-74. (in Korean)
  7. Kang, J. (2020), Overseas construction industry trends in semiannual of 2020, Vol. 2020-02, Export-Import Bank, Seoul, Republic of Korea. (in Korean)
  8. Kim, D., Jeong, S. and Park, J. (2020), "Analysis on Shaft Resistance of the Steel Pipe Prebored and Precast Piles based on Field Load-Transfer Curves and Finite Element Method." Soils and Foundations, Vol.60, No.2, pp.478-495. https://doi.org/10.1016/j.sandf.2020.03.011
  9. Ko, J. Y., Kim, Y. H., Choi, Y. K. and Jeong, S. S. (2010), "Back-calculation of Skin Friction Coefficient (α, β) on a Single Pile by Long-Term Field Monitoring", Journal of the Korean Geotechnical Society, Vol.26, No.11, pp.99-110. (in Korean)
  10. Lee, C. (2010), "Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation", Journal of the Korean Geo-Environmental Society, Vol.11, No.1, pp.27-34. (in Korean)
  11. Lee, K. (2017), Numerical Study on Negative Skin Friction of Open-Ended Steel Pile Considering Inside and Outside Shaft Friction Characteristics, Master Thesis, Incheon National University. (in Korean)
  12. Lee, S. J., Jeong, S. S. and Ko, J. Y. (2010), "A Comparison of Bearing Capacity Equations for a Single Pile Considering Negative Skin Friction", Journal of the Korean Geotechnical Society, Vol.26, No.8, pp.27-37. (in Korean)
  13. Mohamedzein, Y. E., Mohamed, M. G. and El Sharief, A. M. (1999), "Finite Element Analysis of Short Piles in Expansive Soils", Computers and Geotechnics, Vol.24, No.3, pp.231-243. https://doi.org/10.1016/S0266-352X(99)00008-7
  14. Rao, A. S., Phanikumar, B. R., Babu, R. D. and Suresh, K. (2007), "Pullout Behavior of Granular Pile-Anchors in Expansive Clay Beds in Situ", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.5, pp.531-538. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(531)
  15. Rollins, K. (2019), Proposed AASHTO specification for design of piles for downdrag, Publication No. NCHRP12-116, Brigham Young University, Utah, USA.
  16. SIMULIA (2014), 6.14 Documentation collection, ABAQUS/CAE User' Manual, Dassault Systemes, Velizy-Villacoublay, France.
  17. Tan, S. A. and Fellenius, B. H. (2016), "Negative Skin Friction Pile Concepts with Soil-Structure Interaction", Geotechnical Research, Vol.3, No.4, pp.137-147. https://doi.org/10.1680/jgere.16.00006
  18. Tawfiq, K. S. and Caliendo, J. A. (1995), "Bitumen Coating versus Plastic Sheeting for Reducing Negative Skin Friction", Journal of materials in civil engineering, Vol.7, No.1, pp.69-81. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:1(69)
  19. Terzaghi, K. (1942), "Discussion of the Progress Report of the Committee on the Bearing Value of Pile Foundations", In Proceedings ASCE, Vol.68, pp.311-323.
  20. Yoon, G. (2018), Global trend of infra market, world & cites, Korea Trade-Investment Promotion Agency, Seoul, Republic of Korea. (in Korean)