DOI QR코드

DOI QR Code

Changes in Isoflavone Contents and Physicochemical Properties of Soybean Leaf Extract by Extraction Conditions

추출조건에 따른 콩잎 추출물의 이소플라본 함량 및 이화학적 특성

  • Yoon, Jeong-Ah (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University) ;
  • Kwun, Se-Young (Metascreen Inc.) ;
  • Park, Eun-Hee (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University) ;
  • Kim, Myoung-Dong (Division of Food Biotechnology and Biosystems Engineering, Kangwon National University)
  • 윤정아 (강원대학교 바이오산업공학부) ;
  • 권세영 ((주)메타스크린) ;
  • 박은희 (강원대학교 바이오산업공학부) ;
  • 김명동 (강원대학교 바이오산업공학부)
  • Received : 2018.12.31
  • Accepted : 2019.01.10
  • Published : 2019.03.28

Abstract

To utilize soybean leaf, which is a waste product in soybean production, as a value-added food material, this study aimed to investgate the extraction efficiency of isoflavone from soybean leaf and to characterize physicochemical properties of the extract. Maximum isoflavone content of $59.74{\pm}4.54mg/l$ was obtained from soybean leaf extracted at $90^{\circ}C$ for 12 h. DPPH (1,1-diphenyl-2-pricylhydrazyl) radical-scavenging activity and total polyphenol contents reached maximum levels of $67.26{\pm}3.64%$ and $1,688.68{\pm}97.37{\mu}g/ml$ chlorogenic acid equivalent, respectively. Based on the contents of isoflavone and total polyphenol, and DPPH radical-scavenging activity, optimum extraction conditions for soybean leaf using water as solvent were $90^{\circ}C$ and 12 h.

연구는 콩 생산 산업의 부산물로 생산되는 콩잎을 고부가 식품원료로 활용하기 위해 이소플라본의 추출 효율 및 이화학적 특성 변화를 조사하였다. 열수 추출 중 온도와 시간에 따른 이소플라본 함량, DPPH 라디칼 소거능, tannin 함량, 총 폴리페놀 함량을 조사하였다. 이소플라본 함량은 $90^{\circ}C$에서 12시간 동안 추출하였을 때 $59.74{\pm}4.54mg/l$로 가장 높게 나타났으며, 12시간과 24시간 간의 유의적인 차이가 나타나지 않았다. 탄닌 함량은 낮은 온도에서 추출할수록 높은 함량을 나타내었는데, $50^{\circ}C$, 12시간에서 $0.31{\pm}0.02%$로 가장 높게 나타났다. DPPH 라디칼 소거능은 $90^{\circ}C$에서 12시간 동안 추출하였을 때, $67.26{\pm}3.67%$로 가장 높게 나타났으며, 총 폴리페놀 함량도 $1,688.68{\pm}97.37{\mu}g/ml$ CAE로 가장 우수하였다. 따라서, 이소플라본과 폴리페놀의 함량, 항산화 활성 등을 고려하여 콩잎의 열수 추출조건은 $90^{\circ}C$에서 12시간 동안 추출하는 것이 가장 효율적인 것으로 판단되었다.

Keywords

References

  1. Wada K, Tsuji M, Tamura T, Konishi K, Kawachi T, Hori A, et al. 2015. Soy isoflavone intake and stomach cancer risk in Japan: from the takayama study. Int. J. Cancer. 137: 885-892. https://doi.org/10.1002/ijc.29437
  2. Nam H. 1999. Development of bioactive peptides and its market trend. Food Indust. Nutr. 4: 17-19.
  3. Choi Y, Yoon S, Lee MJ, Lee SK, Lee BS. 2001. Dose response relationship of isoflavone supplementation on plasma lipid profiles and total antioxidant status in permenopausal and postmenopausal women. Korean Nutri. Soci. 34: 322-329.
  4. Lee SH, Choi DJ, Kim JG. 2003. Effect of salt concentration on soybean leaf kimchi fermentation. Korean J. Food Preserv. 10: 512-516.
  5. Kim MK, Lee SH, Hwang K. 2011. Physicochemical properties of soybean leaf by cultivar and development of soybean curd prepared with soybean leaf powder. Korean J. Food Cookery Sci. 27: 557-565. https://doi.org/10.9724/kfcs.2011.27.5.557
  6. Ryu SH, Lee HS, Lee YS, Moon GS. 2005. Contents of isoflavones and antioxidative related compounds in soybean leaf, soybean leaf Jangachi, and soybean leaf Kimchi. Korean J. Food Cookery Sci. 21: 433-439.
  7. Ho HM, Chen R, Huang Y, Chen ZY. 2002. Vascular effects of a soy leaves (Glycine max) extract and kaempferol glycosides in isolated rat carotid arteries. Planta. Med. 68: 487-491. https://doi.org/10.1055/s-2002-32545
  8. Li H, Ji HS, Kang JH, Shin DH, Park HY, Choi MS, et al. 2015. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic beta-cell function and suppressing hepatic lipid accumulation in db/db Mice. J. Agric. Food Chem. 63: 7198-7210. https://doi.org/10.1021/acs.jafc.5b01639
  9. Han JM, Li H, Cho MH, Baek SH, Lee CH, Park HY, Jeong TS. 2017. Soy-leaf extract exerts atheroprotective effects via modulation of kruppel-like factor 2 and adhesion molecules. Int. J. Mol. Sci. 18: 21-26. https://doi.org/10.3390/ijms18010021
  10. Kim JW, Kwon YR, Youn KS. 2012. Quality characteristics and antioxidant properties in spray-dried and freeze-dried powder prepared with powdered seaweed extracts. Korean J. Food Sci. Technol. 44: 716-721. https://doi.org/10.9721/KJFST.2012.44.6.716
  11. Kang JR, Lee SJ, Kwon HJ, Kwon MH, Sung NJ. 2012. Establishment of extraction conditions for the optimization of the black garlic antioxidant activity using the response surface methodology. Korean J. Food Preserv. 19: 577-585. https://doi.org/10.11002/kjfp.2012.19.4.577
  12. Lee CY, Kim KM, Son HS. 2013. Optimal extraction conditions to produce rosemary extracts with higher phenolic content and antioxidant activity. Korean J. Food Sci. Technol. 45: 501-507. https://doi.org/10.9721/KJFST.2013.45.4.501
  13. Kwon YR, Youn KS. 2017. Antioxidant and physiological activities of Hijikia fusiforme by extraction methods. Korean Soc. Food Preserv. 24: 631-637. https://doi.org/10.11002/kjfp.2017.24.5.631
  14. Chung JH, Lee HJ, Lee SY, Kim KS, Rim YS, Chin SC, et al. 2006. Establishment of conditions for hot water extraction of Camellia japonica leaves. Korean J. Food Sci. Technol. 38: 823-828.
  15. Kim DC, Kim DW, Lee SD, In MJ. 2006. Preparation of barley leaf powder tea and its quality characteristics. J. Korean Soc. Food Sci. Nutr. 36: 734-737.
  16. Kwon GJ, Choi DS, Wang MH. 2007. Biological activities of hot water extracts from Euonymus alatus Leaf. Korean J. Food Sci. Technol. 39: 569-574.
  17. Alam A, Naik KK, Upadhaya NK, Kumar S, Char KL. 2017. Simple, efficient and economical methods for isolation and estimation of novel isoflavone using RP-HPLC. MethodsX 4: 128-133. https://doi.org/10.1016/j.mex.2017.02.001
  18. Han SK, Song YS, Lee JS, Bang JK, Suh BS, Cho JY, et al. 2010. Changes of the chemical constituents and antioxidant activity during microbial-fermented tea (Camellia sinensis L.) processing. Korean J. Food Sci. Technol. 42: 21-26.
  19. Folin O, Denis W. 1912. On phophotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  20. Woo KS, Jeong JY, Hwang IG, Lee YJ, Lee YR, Park HJ, et al. 2009. Antioxidant activity of ethanol extraction on citron seed by response surface methodology. J. Korean Soc. Food Sci. Nutr. 38: 384-390. https://doi.org/10.3746/jkfn.2009.38.3.384
  21. Duncan DB. 1955. Multiple range and multiple F test. Biometrics 11: 1-42. https://doi.org/10.2307/3001478
  22. Heo SY, Kwak JY, Oh HW, Park DS, Bae KS, Shin DH, et al. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759.
  23. Choi JS, Kwon TW, Kim JS. 1996. Isoflavone contents in some varieties of soybean. Food Sci. Biotechnol. 5: 167-169.
  24. Shin JH, Joo NM. 2016. Component changes in antioxidant activity and isoflavones (${\beta}$-glucoside & aglycone) contents of small black bean according to different cooking methods. Korean J. Food Cook Sci. 32: 197-203. https://doi.org/10.9724/kfcs.2016.32.2.197
  25. Lee MH, Park YH, Oh HS, Kwak TS. 2002. Isoflavone content in soybean and its processed products. Korean J. Food Sci. Technol. 34: 365-369.
  26. Kim YM, Kim YW. 1998. Changes of enzyme activity, trypsin inhibitor, tannin and phytic acid during heat treatment of soybean. Korean J. Food Sci. Technol. 30: 1012-1017.
  27. Bressani R, Elias LG, Wolzak A, Hagerman AE, Butler LG. 1983. Tannin in common beans : methods of analysis and effects on protein quality. J. Food Sci. 48: 1000-1001. https://doi.org/10.1111/j.1365-2621.1983.tb14954.x
  28. Kim JP, Yang YS, Kim JH, Lee HH, Kim ES, Moon YW, et al. 2012. Chemical properties and DPPH radical scavenging ability of sword bean (Canavalia gladiata) extract. Korean J. Food Sci. Technol. 44: 441-446. https://doi.org/10.9721/KJFST.2012.44.4.441
  29. Lee LS, Choi EJ, Kim CH, Kim YB, Kum JS, Park JD. 2014. Quality characteristics and antioxidant properties of black and yellow soybeans. Korean J. Food Sci. Technol. 46: 757-761. https://doi.org/10.9721/KJFST.2014.46.6.757

Cited by

  1. 반응표면분석법을 이용한 쌀 단백질 초고압 추출조건 최적화 vol.34, pp.6, 2019, https://doi.org/10.7318/kjfc/2019.34.6.779