DOI QR코드

DOI QR Code

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis

  • Ahn, Da-Hee (Department of Chemical Engineering, Soongsil University) ;
  • Park, Han-Gyu (Department of Chemical Engineering, Soongsil University) ;
  • Song, Won-Suk (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Seong-Min (Department of Chemical Engineering, Soongsil University) ;
  • Jo, Sung-Hyun (Department of Chemical Engineering, Soongsil University) ;
  • Yang, Yung-Hun (Department of Biological Engineering, Konkuk University) ;
  • Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
  • Received : 2018.10.16
  • Accepted : 2018.10.31
  • Published : 2019.03.28

Abstract

Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.

Keywords

References

  1. Oh J, Lee J, Baek S, Jo Y, Kim H. 2018. Characterization of three extracellular ${\beta}$-glucosidases produced by a fungal isolate Aspergillus sp. YDJ14 and their hydrolyzing activity for a flavone glycoside. J. Microbiol. Biotechnol. 28: 757-764. https://doi.org/10.4014/jmb.1802.02051
  2. Fliegmann J, Mithofer A, Wanner G, Ebel J. 2004. An ancient enzyme domain hidden in the putative ${\beta}$-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279: 1132-1140. https://doi.org/10.1074/jbc.M308552200
  3. Harris PV, Welner D, McFarland K, Re E, Navarro Poulsen J-C, Brown K, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316. https://doi.org/10.1021/bi100009p
  4. Allgaier M, Reddy A, Park JI, Ivanova N, D'haeseleer P, Lowry S, et al. 2010. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLos One. 5: e8812. https://doi.org/10.1371/journal.pone.0008812
  5. Turner C, Turner P, Jacobson G, Almgren K, Waldeback M, Sjoberg P, et al. 2006. Subcritical water extraction and ${\beta}$-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem. 8: 949-959. https://doi.org/10.1039/B608011A
  6. Maitan-Alfenas GP, Visser EM, Guimaraes VM. 2015. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr. Opin. Food Sci. 1: 44-49. https://doi.org/10.1016/j.cofs.2014.10.001
  7. Amraini SZ, Ariyani LP, Hermansyah H, Setyahadi S, Rahman SF, Park D-H, et al. 2017. Production and characterization of cellulase from E. coli EgRK2 recombinant based oil palm empty fruit bunch. Biotechnol. Bioprocess Eng. 22: 287-295. https://doi.org/10.1007/s12257-017-0034-2
  8. Taylor LE, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y, et al. 2008. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol. 26: 413-424. https://doi.org/10.1016/j.tibtech.2008.05.002
  9. Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y. 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2: 185-190. https://doi.org/10.1007/s007920050059
  10. Cherry JR, Fidantsef AL. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438-443. https://doi.org/10.1016/S0958-1669(03)00099-5
  11. Dodd D, Cann IK. 2009. Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol. Bioenergy. 1: 2-17. https://doi.org/10.1111/j.1757-1707.2009.01004.x
  12. Goddard JP, Reymond JL. 2004. Enzyme assays for high-throughput screening. Curr Opin. Biotechnol. 15: 314-322. https://doi.org/10.1016/j.copbio.2004.06.008
  13. Reymond JL, Fluxa VS, Maillard N. 2009. Enzyme assays. Chem. Commun. (Camb). 1: 34-46.
  14. Goddard JP, Reymond JL. 2004. Recent advances in enzyme assays. Trends Biotechnol. 22: 363-370. https://doi.org/10.1016/j.tibtech.2004.04.005
  15. Xia W, Rininsland F, Wittenburg SK, Shi X, Achyuthan KE, McBranch DW, et al. 2004. Applications of fluorescent polymer superquenching to high throughput screening assays for protein kinases. Assay Drug Dev. Technol. 2: 183-192. https://doi.org/10.1089/154065804323056521
  16. Beisson F, Ferte N, Nari J, Noat G, Arondel V, Verger R. 1999. Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. J. Lipid Res. 40: 2313-2321. https://doi.org/10.1016/S0022-2275(20)32106-4
  17. Wahler D, Reymond J-L. 2001. High-throughput screening for biocatalysts. Curr. Opin Biotechnol. 12: 535-544. https://doi.org/10.1016/S0958-1669(01)00260-9
  18. Wahler D, Reymond J-L. 2001. Novel methods for biocatalyst screening. Curr. Opin. Chem. Biol. 5: 152-158. https://doi.org/10.1016/S1367-5931(00)00184-8
  19. de Rond T, Danielewicz M, Northen T. 2015. High throughput screening of enzyme activity with mass spectrometry imaging. Curr. Opin. Biotechnol. 31: 1-9. https://doi.org/10.1016/j.copbio.2014.07.008
  20. Pi N, Armstrong JI, Bertozzi CR, Leary JA. 2002. Kinetic analysis of NodST sulfotransferase using an electrospray ionization mass spectrometry assay. Biochemistry. 41: 13283-13288. https://doi.org/10.1021/bi020457g
  21. Yu Y, Mizanur RM, Pohl NL. 2008. Glycosidase activity profiling for bacterial identification by a chemical proteomics approach. Biocatal. Biotransformation 26: 25-31. https://doi.org/10.1080/10242420701791151
  22. Greis KD. 2007. Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 26: 324-339. https://doi.org/10.1002/mas.20127
  23. Kiran GS, Lipton AN, Kennedy J, Dobson AD, Selvin J. 2014. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered 5: 305-318. https://doi.org/10.4161/bioe.29898
  24. Mirande C, Canard I, Blanche SBC, Charrier J-P, Van Belkum A, Welker M, et al. 2015. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 34: 2225-2234. https://doi.org/10.1007/s10096-015-2473-z
  25. Weiskopf AS, Vouros P, Harvey DJ. 1997. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom. 11: 1493-1504. https://doi.org/10.1002/(SICI)1097-0231(199709)11:14<1493::AID-RCM40>3.0.CO;2-1
  26. Cocuron J-C, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, et al. 2007. A gene from the cellulose synthase-like C family encodes a ${\beta}$-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA 104: 8550-8555. https://doi.org/10.1073/pnas.0703133104
  27. Creaser CS, Reynolds JC, Harvey DJ. 2002. Structural analysis of oligosaccharides by atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 16: 176-184. https://doi.org/10.1002/rcm.563
  28. Lopez-Garcia M, Garcia MSD, Vilarino JML, Rodriguez MVG. 2016. MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species. Food Chem. 199: 597-604. https://doi.org/10.1016/j.foodchem.2015.12.016
  29. Bungert D, Bastian S, Heckmann-Pohl DM, Giffhorn F, Heinzle E, Tholey A. 2004. Screening of sugar converting enzymes using quantitative MALDI-ToF mass spectrometry. Biotechnol. Lett. 26: 1025-1030. https://doi.org/10.1023/B:BILE.0000032965.18721.62
  30. Jiang G, Vasanthan T. 2000. MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble ${\beta}$-glucan from ten barley varieties. J. Agric. Food Chem. 48: 3305-3310. https://doi.org/10.1021/jf0001278
  31. de Carvalho CC. 2011. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol. Adv. 29: 75-83. https://doi.org/10.1016/j.biotechadv.2010.09.001
  32. Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules. 4: 117-139. https://doi.org/10.3390/biom4010117
  33. Li Y, Ku S, Park MS, Li Z, Ji GE. 2017. Acceleration of aglycone isoflavone and ${\gamma}$-aminobutyric acid production from doenjang using whole-cell biocatalysis accompanied by protease treatment. J. Microbiol. Biotechnol. 27: 1952-1960. https://doi.org/10.4014/jmb.1705.05052
  34. Yang M, Galizzi A, Henner D. 1983. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucl. Acids Res. 11: 237-250. https://doi.org/10.1093/nar/11.2.237
  35. Hatfield RD, Nevins DJ. 1987. Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol. 83: 203-207. https://doi.org/10.1104/pp.83.1.203
  36. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, et al. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91. https://doi.org/10.1038/nature01582
  37. Perna NT, Plunkett III G, Burland V, Mau B, Glasner JD, Rose DJ, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409: 529-533. https://doi.org/10.1038/35054089
  38. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
  39. Park Y, Yun H. 1999. Cloning of the Escherichia coli endo-1, 4-Dglucanase gene and identification of its product. Mol. Gen. Genet. 261: 236-241. https://doi.org/10.1007/s004380050962
  40. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852-856. https://doi.org/10.1038/35101614
  41. Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R, Wehnes C, et al. 2013. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol. Evol. 5: 2109-2123. https://doi.org/10.1093/gbe/evt159
  42. Portmann A-C, Fournier C, Gimonet J, Ngom-Bru C, Barretto C, Baert L. 2018. A validation approach of an end-to-end whole genome sequencing workflow for source tracking of Listeria monocytogenes and Salmonella enterica. Front Microbiol. 9: 446-458. https://doi.org/10.3389/fmicb.2018.00446