• Title/Summary/Keyword: whole-cell biocatalysis

Search Result 9, Processing Time 0.025 seconds

Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG

  • Ku, Seockmo;You, Hyun Ju;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1206-1215
    • /
    • 2016
  • Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40℃, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd.

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis

  • Ahn, Da-Hee;Park, Han-Gyu;Song, Won-Suk;Kim, Seong-Min;Jo, Sung-Hyun;Yang, Yung-Hun;Kim, Yun-Gon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.

Acceleration of Aglycone Isoflavone and γ-Aminobutyric Acid Production from Doenjang Using Whole-Cell Biocatalysis Accompanied by Protease Treatment

  • Li, Yincong;Ku, Seockmo;Park, Myeong Soo;Li, Zhipeng;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1952-1960
    • /
    • 2017
  • Recently, soybean isoflavone aglycones (i.e., daidzein and genistein) and ${\gamma}-aminobutyric$ acid (GABA) have begun to receive considerable consumer attention owing to their potential as nutraceuticals. To produce these ingredients, multiple microorganisms and their enzymes are commonly used for catalysis in the nutraceutical industry. In this work, we introduce a novel fermentation process that uses whole-cell biocatalysis to accelerate GABA and isoflavone aglycone production in doenjang (a traditional Korean soybean paste). Microbial enzymes transform soybean isoflavone glycosides (i.e., daidzin and genistin) and monosodium glutamate into soybean isoflavone aglycones and GABA. Lactobacillus brevis GABA 100 and Aspergillus oryzae KACC 40250 significantly reduced the production time with the aid of a protease. The resulting levels of GABA and daidzein were higher, and genistein production resembled the levels in traditional doenjang fermented for over a year. Concentrations of GABA, daidzein, and genistein were measured as 7,162, 60, and $59{\mu}g/g$, respectively on the seventh day of fermentation. Our results demonstrate that the administration of whole-cell L. brevis GABA 100 and A. oryzae KACC 40250 paired with a protease treatment is an effective method to accelerate GABA, daidzein, and genistein production in doenjang.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Raoultella ornithinolytica BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway

  • Yuan, Haibo;Liu, Yanfeng;Lv, Xueqin;Li, Jianghua;Du, Guocheng;Shi, Zhongping;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1999-2008
    • /
    • 2018
  • The compound 2,5-furandicarboxylic acid (FDCA), an important bio-based monomer for the production of various polymers, can be obtained from 5-hydroxymethylfurfural (HMF). However, efficient production of FDCA from HMF via biocatalysis has not been well studied. In this study, we report the identification of key genes that are involved in FDCA synthesis and then the engineering of Raoultella ornithinolytica BF60 for biocatalytic oxidation of HMF to FDCA using its resting cells. Specifically, previously unknown candidate genes, adhP3 and alkR, which were responsible for the reduction of HMF to the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol), were identified by transcriptomic analysis. Combinatorial deletion of these two genes resulted in 85.7% reduction in HMF alcohol formation and 23.7% improvement in FDCA production (242.0 mM). Subsequently, an aldehyde dehydrogenase, AldH, which was responsible for the oxidation of the intermediate 5-formyl-2-furoic acid (FFA) to FDCA, was identified and characterized. Finally, FDCA production was further improved by overexpressing AldH, resulting in a 96.2% yield of 264.7 mM FDCA. Importantly, the identification of these key genes not only contributes to our understanding of the FDCA synthesis pathway in R. ornithinolytica BF60 but also allows for improved FDCA production efficiency. Moreover, this work is likely to provide a valuable reference for producing other furanic chemicals.

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Engineering CotA Laccase for Acidic pH Stability Using Bacillus subtilis Spore Display

  • Sheng, Silu;Jia, Han;Topiol, Sidney;Farinas, Edgardo T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.507-513
    • /
    • 2017
  • Bacillus subtilis spores can be used for protein display to engineer protein properties. This method overcomes viability and protein-folding concerns associated with traditional protein display methods. Spores remain viable under extreme conditions and the genotype/phenotype connection remains intact. In addition, the natural sporulation process eliminates protein-folding concerns that are coupled to the target protein traveling through cell membranes. Furthermore, ATP-dependent chaperones are present to assist in protein folding. CotA was optimized as a whole-cell biocatalyst immobilized in an inert matrix of the spore. In general, proteins that are immobilized have advantages in biocatalysis. For example, the protein can be easily removed from the reaction and it is more stable. The aim is to improve the pH stability using spore display. The maximum activity of CotA is between pH 4 and 5 for the substrate ABTS (ABTS = diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate). However, the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 5. A library of approximately 3,000 clones was screened. A E498G variant was identified to have a half-life of inactivation ($t_{1/2}$) at pH 4 that was 24.8 times greater compared with wt-CotA. In a previous investigation, a CotA library was screened for organic solvent resistance and a T480A mutant was found. Consequently, T480A/E498G-CotA was constructed and the $t_{1/2}$ was 62.1 times greater than wt-CotA. Finally, E498G-CotA and T480A/E498G-CotA yielded 3.7- and 5.3-fold more product than did wt-CotA after recycling the biocatalyst seven times over 42 h.