DOI QR코드

DOI QR Code

Metabolic Engineering of Corynebacterium glutamicum for N-acetylglucosamine Production

N-아세틸글루코사민 생산을 위한 코리네박테리움 글루타미컴의 대사공학

  • Kim, Jin-Yeon (Department of Pharmacy, Kyungsung University) ;
  • Kim, Bu-yeon (Major in Food Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University) ;
  • Moon, Kyung-Ho (Department of Pharmacy, Kyungsung University) ;
  • Lee, Jin-Ho (Major in Food Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University)
  • Received : 2018.12.25
  • Accepted : 2019.01.04
  • Published : 2019.03.28

Abstract

Recombinant Corynebacterium glutamicum producing N-acetylglucosamine (GlcNAc) was constructed by metabolic engineering. To construct a basal strain producing GlcNAc, the genes nagA, nagB, and nanE encoding N-acetylglucosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase, and N-acetylmannosamine-6-phosphate epimerase, respectively, were sequentially deleted from C. glutamicum ATCC 13032, yielding strain KG208. In addition, the genes glmS and gna1 encoding glucosamine-6-phosphate synthase and glucosamine-6-phosphate N-acetyltransferase, which originated from C. glutamicum and Saccharomyces cerevisiae, respectively, were expressed in several expression vectors. Among several combinations of glmS and gna1 expression, recombinant cells expressing glmS and gna1 under control of the ilvC promoter produced 1.77 g/l of GlcNAc and 0.63 g/l of glucosamine in flask cultures.

대사공학을 이용하여 N-아세틸글루코사민(GlcNAc)을 생산하는 재조합 Corynebacterium glutamicum을 개발하였다. 먼저 GlcNAc를 생산하는 기반균주를 제작하기 위하여, N-acetylglucosamine-6-phosphate deacetylase와 glucosamine-6-phosphate deaminase를 암호화하는 nagAB와 N-acetylmannosamine-6-phosphate epimerase를 암호화하는 nanE를 C. glutamicum ATCC 13032에서 순차적으로 결손하여, 최종적으로 KG208 균주를 제작하였다. 또한, glucosamine-6-phosphate synthase를 암호화하는 C. glutamicum 유래의 glmS와 glucosamine-6-phosphate N-acetyltransferase를 암호화하는 Saccharomyces cerevisiae 유래의 gna1을 각각 여러 발현벡터에 클로닝하였다. 여러 발현 조합의 플라스미드들 중에서 pCXI40-glmS와 pCEI40-gna1을 함유한 제조합균주 KG440은 삼각플라스크 발효에서 1.77 g/l의 GlcNAc와 0.63 g/l의 글루코사민을 생산하였다.

Keywords

References

  1. Hsieh JW, Wu HS, Wei YH, Wang SS. 2007. Determination and kinetics of producing glucosamine using fungi. Biotechnol. Prog. 23: 1009-1016. https://doi.org/10.1021/bp070037o
  2. Sitanggang AB, Sophia L, Wu HS. 2012. Aspects of glucosamine production using microorganisms. Int. Food Res. J. 19: 393-404.
  3. Liu L, Liu Y, Shin HD, Chen RR, Li J, Du G, et al. 2013. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl. Microbiol. Biotechnol. 97: 6149-6158. https://doi.org/10.1007/s00253-013-4995-6
  4. Nakamura M, Hikida M, Nakano T, Ito S, Hamano T, Kinoshita S. 1993. Characterization of water retentive properties of hyaluronan. Cornea 12: 433-436. https://doi.org/10.1097/00003226-199309000-00010
  5. Park C, Chung KH, Jeong TR, Yang HP, Nam KS, Kim CH. 2000. Effects of N-acetylglucosamine on suppression of collagenolysis and bone resorption in mouse calvarial osteoblasts. J. Chitin Chitosan 5: 79-87.
  6. Cohen-Kupiec R, Chet I. 1998. The Molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9: 270-277. https://doi.org/10.1016/S0958-1669(98)80058-X
  7. Suresh PV. 2012. Biodegradation of shrimp processing biowaste and concomitant production of chitinase enzyme and N-acetyl-D-glucosamine by marine bacteria: production and process optimization. World J. Microbiol. Biotechnol. 28: 2945-2962. https://doi.org/10.1007/s11274-012-1106-2
  8. Donzelli BGG, Ostroff G, Harman GE. 2003. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Carbohydr. Res. 338: 1823-1833. https://doi.org/10.1016/S0008-6215(03)00269-6
  9. Nampoothiri KM, Sandhya TVBC, Sabu A, Szakacs G, Pandey A. 2004. Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem. 39: 1583-1590. https://doi.org/10.1016/S0032-9592(03)00282-6
  10. Sitanggang AB, Wu HS, Wang SS, Ho YC. 2010. Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour. Technol. 101: 3595-3601. https://doi.org/10.1016/j.biortech.2009.12.084
  11. Zhang JX, Liu L, Li JH, Du GC, Chen J. 2012. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time variant kinetics analysis of dissolved oxygen level. Bioresour. Technol. 111: 507-511. https://doi.org/10.1016/j.biortech.2012.02.063
  12. Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, et al. 2005. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 7: 201-214. https://doi.org/10.1016/j.ymben.2005.02.001
  13. Liu Y, Liu L, Shin HD, Chen RR, Li J, Du G, et al. 2013. Pathway engineering of Bacillus subtilis for microbial production of Nacetylglucosamine. Metab. Eng. 19: 107-115. https://doi.org/10.1016/j.ymben.2013.07.002
  14. Liu Y, Zhu Y, Li J, Shin HD, Chen RR, Du G, et al. 2014. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab. Eng. 23: 42-52. https://doi.org/10.1016/j.ymben.2014.02.005
  15. Becker J, Wittmann C. 2012. Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 23: 631-640. https://doi.org/10.1016/j.copbio.2011.11.012
  16. Lee J. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79. https://doi.org/10.4014/jmb.1310.10032
  17. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  18. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. https://doi.org/10.1007/s002530051557
  19. Syukur PH, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, et al. 2018. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J. Biotechnol. 282: 92-100. https://doi.org/10.1016/j.jbiotec.2018.07.016
  20. Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, et al. 2014. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetylglucosamine. Appl. Microbiol. Biotechnol. 98: 5633-5643. https://doi.org/10.1007/s00253-014-5676-9
  21. Uhde A, Bruhl N, Goldbeck O, Matano C, Gurow O, Ruckert C, et al. 2016. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J. Bacteriol. 198: 2204-2218. https://doi.org/10.1128/JB.00820-15
  22. Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. 1999. Saccharomyces cerevisiae GNA1, an essential gene encoding a novel acetyltransferase involved in UDP-N-acetylglucosamine synthesis. J. Biol. Chem. 274: 424-429. https://doi.org/10.1074/jbc.274.1.424
  23. Deng MD, Grund AD, Wassink SL, Peng SS, Nielsen KL, Huckins BD, et al. 2006. Directed evolution and characterization of Escherichia coli glucosamine synthase. Biochimie 88: 419-429. https://doi.org/10.1016/j.biochi.2005.10.002