• Title/Summary/Keyword: Optimization constraints

Search Result 1,552, Processing Time 0.028 seconds

Size Optimization Design Based on Maximum Stiffness for Structures (구조물의 최대강성 치수최적설계)

  • Shin, Soo-Mi;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • This study presents a structural design optimizing sizes of high-rise steel plane truss members by maximizing stiffness subjected to given volume constraints. The sizing optimum design is evaluated by using a well-known optimality criteria (OC) of gradient-based optimization methods. In typical size optimization methods, truss structures are optimized with respect to minimum weight with constraints on the value of some displacement and on the member stresses. The proposed method is an inversed size optimization process in comparisons with the typical size optimization methods since it maximizes stiffness associated with stresses or displacements subjected to volume constraints related to weight. The inversed approach is another alternative to classical size optimization methods in order to optimize members' sizes in truss structures. Numerical applications of a round shape steel pipe truss structure are studied to verify that the proposed maximum stiffness-based size optimization design is suitable for optimally developing truss members's sizes.

Study on multi-objective optimization method for radiation shield design of nuclear reactors

  • Yao Wu;Bin Liu;Xiaowei Su;Songqian Tang;Mingfei Yan;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.520-525
    • /
    • 2024
  • The optimization design problem of nuclear reactor radiation shield is a typical multi-objective optimization problem with almost 10 sub-objectives and the sub-objectives are always demanded to be under tolerable limits. In this paper, a design method combining multi-objective optimization algorithms with paralleling discrete ordinate transportation code is developed and applied to shield design of the Savannah nuclear reactor. Three approaches are studied for light-weighted and compact design of radiation shield. Comparing with directly optimization with 10 objectives and the single-objective optimization, the approach by setting sub-objectives representing weight and volume as optimization objectives while treating other sub-objectives as constraints has the best performance, which is more suitable to reactor shield design.

Continuous size optimization of large-scale dome structures with dynamic constraints

  • Dede, Tayfun;Grzywinski, Maksym;Selejdak, Jacek
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.397-405
    • /
    • 2020
  • In this study size optimization of large-scale dome structures with dynamic constraints is presented. In the optimal design of these structure, the Jaya algorithm is used to find minimal size of design variables. The design variables are the cross-sectional areas of the steel truss bar elements. To take into account the constraints which are the first five natural frequencies of the structures, the finite element analysis is coded in Matlab programs using eigen values of the stiffness matrix of the dome structures. The Jaya algorithm and the finite elements codes are combined by the help of the Matlab - GUI (Graphical User Interface) programming to carry out the optimization process for the dome structures. To show the efficiency and the advances of the Jaya algorithm, 1180 bar dome structure and the 1410 bar dome structure were tested by taking into the frequency constraints. The optimal results obtained by the proposed algorithm are compared with those given in the literature to demonstrate the performance of the Jaya algorithm. At the end of the study, it is concluded that the proposed algorithm can be effectively used in the optimal design of large-scale dome structures.

Design Sensitivity Analysis and Optimization of Finite Dimensional Structures by Adjoint Variable Method (의사변수법(擬似變數法)에 의한 유한차원(有限次元) 구조물(構造物)의 설계민감도(設計敏感度) 해석(解析) 및 최적화(最適化)에 관한 연구(硏究))

  • Suh, Kwan Se;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 1985
  • This paper deals with the adjoint variable method in design sensitivity analysis that is essential to the structure optimization. The method is shown to be much simpler than the conventional method in structure optimization by applying it to the optimal design of finite dimensional structures. Design sensitivity analyses and their numerical solutions for the principal constraints, i.e., displacement and stress constraints under static loads are obtained. Furthermore, it is proved that optimization can be carried out efficiently by applying the optimization algorithm. Structure optimization problems of minimizing the volumes of the truss structures(finite dimensional structures) under the appropriate boundary conditions, loading conditions and constraints are considered.

  • PDF

PORTFOLIO AND CONSUMPTION OPTIMIZATION PROBLEM WITH COBB-DOUGLAS UTILITY AND NEGATIVE WEALTH CONSTRAINTS

  • ROH, KUM-HWAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.301-306
    • /
    • 2018
  • I obtain the optimal portfolio and consumption strategies of an investor who have a Cobb-Douglas utility function. And I assume that there is negative wealth constraints. This constraints mean that the investor can borrow partially against her future labor income.

A Study on the Optimization for Brokering Between Cargos and Ships (선박을 이용한 화물 운송 중개 최적화 방안 연구)

  • Seo Sang-Koo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2004
  • This paper presents a study on the optimization for brokering between cargos and ships for future e-logistics. The primary contribution of this research is that we establish an optimization model by formalizing the criteria for the brokering such as time constraints, weight constraints, and preference values between cargos and ships. Another important contribution is that we not only investigate the complexity and the tractability of the optimal brokering problem but present how to evaluate the performance of the optimization program through an experiment. We first derive the preference values between cargos and ships using the time and the weight constraints. These preference values between each pair of cargos and ships are assigned to corresponding binary decision variables as coefficients in the objective function. The optimization model selects pairs of cargos and ships in a way that the sum of the preference values is maximized while satisfying given constraints. Experiment shows that the Davis-Putnam based optimization program finds optimal solutions in reasonable time for the problems with less than 90 decision variables.

  • PDF

The Development of Production Simulation Methodology by Optimization Technique and It's Application to Utility Expansion Planning (최적화 기법에 의한 발전시뮬레이션 방법론의 개발 및 전원확충계획 문제에의 적용)

  • Song, K.Y.;Oh, K.H.;Kim, Y.H.;Cha, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.793-796
    • /
    • 1996
  • This study proposes a new algorithm which performs a production simulation under various constraints and maintains computational efficiency. In order to consider the environmental and operational constraints, the proposed algorithm is based on optimization techniques formulated in LP form In the algorithm, "system characteristic constraints" reflect the system characteristics such as LDC shape, unit loading order and forced outage rate. By using the concept of Energy Invariance Property and two operational rules i.e. Compliance Rule for Emission Constraint, Compliance Rule for Limited Energy of Individual Unit, the number of system characteristic constraints is appreciably reduced. As a solution method of the optimization problem, the author uses Karmarkar's method which performs effectively in solving large scale LP problem. The efficiency of production simulation is meaningful when it is effectively used in power system planning. With the proposed production simulation algorithm, an optimal expansion planning model which can cope with operational constraints, environmental restriction, and various uncertainties is developed. This expansion planning model is applied to the long range planning schemes by WASP, and determines an optimal expansion scheme which considers the effect of supply interruption, load forecasting errors, multistates of unit operation, plural limited energy plants etc.

  • PDF

Optimization Design of Log-periodic Dipole Antenna Arrays Via Multiobjective Genetic Algorithms

  • Wang, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1353-1355
    • /
    • 2003
  • Genetic algorithms (GA) is a well known technique that is capable of handling multiobjective functions and discrete constraints in the process of numerical optimization. Together with the Pareto ranking scheme, more than one possible solution can be obtained despite the imposed constraints and multi-criteria design functions. In view of this unique capability, the design of the log-periodic dipole antenna array (LPDA) using this special feature is proposed in this paper. This method also provides gain, front-back level and S parameter design tradeoff for the LPDA design in broadband application at no extra computational cost.

  • PDF

Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing (하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계)

  • Kim, Bong Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.

A Method using Parametric Approach for Constrained Optimization and its Application to a System of Structural Optimization Problems (제약을 갖는 최적화문제에 대한 파라메트릭 접근법과 구조문제의 최적화에 대한 응용)

  • Yang, Y.J.;Kim, W.S.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.73-82
    • /
    • 1990
  • This paper describes two algorithms to Nonlinear programming problems with equality constraints and with equality and inequality constraints. The first method treats nonlinear programming problems with equality constraints. Utilizing the nonlinear programming problems with equality constraints. Utilizing the nonlinear parametric programming technique, the method solves the problem by imbedding it into a suitable one-parameter family of problems. The second method is to solve a nonlinear programming problem with equality and inequality constraints, by minimizing a square sum of nonlinear functions which is derived from the Kuhn-Tucker condition.

  • PDF