DOI QR코드

DOI QR Code

Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing

하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계

  • Kim, Bong Ik (Department of Ocean Civil Engineering, Gyeongsang National University)
  • 김봉익 (국립경상대학교, 해양토목공학과)
  • Received : 2014.07.09
  • Accepted : 2014.11.17
  • Published : 2015.04.27

Abstract

In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.

트러스구조는 대형구조물의 설계 및 시공에 편리하며, 부재의 경량화에 따른 비용의 절검 효과를 얻을 수 있는 구조물로 최근 다양한 형태의 구조물건설에 많이 사용되고 있다. 본 연구에서는 응력, 좌굴 그리고 구조물의 고유진동수 제약조건을 고려한 트러스 구조물의 단면과 형상에 대해 최적설계를 하였다. 최적설계에서 최적화기법으로 HA-SA방법을 제시하였으며, HA-SA방법은 HA 초기메모리에서 최상의 설계를 SA의 초기 설계로 하여 최적화 하는 방법이다. 예제에 사용된 트러스 구조물은 고유진동수 제약조건으로 10-bar, 72-bar, 52-bar 트러스와 응력 및 좌굴응력 제약조건으로 18-bar, 47-bar 트러스를 사용하였다. 그리고 52-bar, 18-bar, 47-bar의 경우는 트러스의 형상을 최적설계 하였다. 예제로부터 다양한 설계 제약조건하에서 여러 연구결과와 HA, SA, GA, HA-SA방법에 의한 결과를 서로 비교하여 HA-SA방법의 적용성을 입증하였다.

Keywords

References

  1. Hansen, S.R. and Vanderplaats, G.N. (1990) Approximation method for configuration optimization of trusses, AIAA, Vol.28, No.1, pp.161-168. https://doi.org/10.2514/3.10367
  2. Salajegheh, E. and Vanderplaats, G.N. (1993) Optimum design of trusses with discrete sizing and shape variables, Structural optimization, Vol.6, pp.79-85. https://doi.org/10.1007/BF01743339
  3. Hansancebi, O. and Erabatur, F. (2002) On efficient use of simulated annealing in complex structural optimization problems, Acta mechanica, Vol.157, pp.27-50. https://doi.org/10.1007/BF01182153
  4. Ali, N., Behdiana, K., and Fawaz, Z. (2003) Applicability and variability of a GA based finite element analysis architecture for structural design optimization, Computer & structures, Vol.81, pp.2259-2271. https://doi.org/10.1016/S0045-7949(03)00255-4
  5. Ahrari, A., and Atai, A.A. (2013) Fully stressed design evolution strategy for shape and size optimization, Computer & structures, Vol.123, pp.58-67. https://doi.org/10.1016/j.compstruc.2013.04.013
  6. Lee, K.S., Geem, Z.W., and Bae, K.W. (2005) The harmony search heuristic algorithm for discrete structural optimization, Engineering optimization, Vol.37, No.7, pp. 663-684. https://doi.org/10.1080/03052150500211895
  7. 이승혜, 이재홍(2013) 역 최적화 방법을 이용한 트러스 구조물의 손상탐지, 한국강구조학회, 제25권, 제4호, pp. 441-449. Lee, S.H. and Lee, J.H. (2013) Damage Detection in Truss Structures using Anti-Optimization, Journal of korean society of steel construction, KSSC, Vol.25, No.4, pp. 441-449 (in Korean). https://doi.org/10.7781/KJOSS.2013.25.4.441
  8. 김형민, 이재홍(2012) 유전 알고리즘을 이용한 트러스 구조물 손상탐지, 한국강구조학회, 제24권, 제5호, pp.549-558. Kim, H.M. and Lee, J.H. (2012) Damage Detection of Truss Structures Using Genetic Algorithm, Journal of korean society of steel construction, KSSC, Vol.24, No.5, pp.549-558 (in Korean).
  9. 도기영, 윤성원(2014) 보도교의 구조시스템별 고유진동수 분석, 한국강구조학회, 제26권, 제5호, pp.375-383. Do, K.Y. and Yun, S.W. (2014) Analysis of Natural Frequency According to Span of Foot-bridges, Journal of korean society of steel construction, KSSC, Vol.26, No.5, pp.375-383 (in Korean). https://doi.org/10.7781/KJOSS.2014.26.5.375
  10. 김봉익, 권중현(2013) 하모니 서치 알고리즘과 고유진동수 제약조건에 의한 트러스의 단면과 형상 최적설계, 한국해양공학회지, 제27권, 제5호, pp.36-42. Kim, B.I. and Kow, J.H. (2013) Optimum design of truss on sizing and shape with frequency constraints and harmony search algorithm, Journal of ocean engineering and technology, KSOE, Vol.27, No.5, pp.36-42 (in Korean). https://doi.org/10.5574/KSOE.2013.27.5.036
  11. Lingyun, W., Mei, Z., Guangming, W., and Guang, M. (2005) Truss optimization on shape and sizing with frequency constraints based on genetic algorithm, Computer mechanics, Vol.35, pp.361-368. https://doi.org/10.1007/s00466-004-0623-8
  12. Sadek, E.A. (1996) Minimum weight design of structures under frequency and frequency response constraints, Computer & structures, Vol.60, No1, pp.73-77. https://doi.org/10.1016/0045-7949(95)00383-5
  13. Sedaghati, R., Suleman, A., and Tabarrok, B. (2002) Structural optimization with frequency constraints using the finite element force method, AIAA, Vol.40, No.2, pp.382-388. https://doi.org/10.2514/2.1657
  14. Tong, W.H. and Liu, G.R. (2001) An optimization procedure for truss structures with discrete design variables and dynamic constraints, Computer & structures, Vol.79, pp.155-162. https://doi.org/10.1016/S0045-7949(00)00124-3
  15. Pantelides, C.P. and Tzan, S.R. (1997) Optimal design of dynamically constraints structures, Computer & structures, Vol.62, No.1, pp.141-149. https://doi.org/10.1016/S0045-7949(96)00243-X
  16. Kaveh, A. and Zolghadr, A.S. (2012) Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability, Computer & Structures, Vol.102-103, pp.14-27. https://doi.org/10.1016/j.compstruc.2012.03.016
  17. Wang, D., Zha, W.H., and Jian, J.S. (2004) Truss optimization on shape and sizing frequency constraints, AIAA, Vol.42, pp.1452-1459.
  18. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953) Equation of state calculations by fast computing machines, Journal of Chem. Phys. Vol.21, 1087. https://doi.org/10.1063/1.1699114
  19. Kickpatrick, C., Gelatt, C.D., and Vecchi, M.P. (1983) Optimization by simulated annealing, Science, Vol.220, No.4598, pp.671-680. https://doi.org/10.1126/science.220.4598.671
  20. Goldberg, E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.
  21. 김봉익(2012) 유전자 알고리즘을 사용한 강구조물의 최적설계, 강구조학회논문집, 한국강구조학회, 제24권, 제6호, pp.701-710. Kim, B.I. (2012) Optimum design of steel structures using genetic algorithm, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.6, pp.701-710(in Korean).