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PORTFOLIO AND CONSUMPTION OPTIMIZATION

PROBLEM WITH COBB-DOUGLAS UTILITY AND

NEGATIVE WEALTH CONSTRAINTS†
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Abstract. I obtain the optimal portfolio and consumption strategies of

an investor who have a Cobb-Douglas utility function. And I assume that

there is negative wealth constraints. This constraints mean that the in-
vestor can borrow partially against her future labor income.
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1. Introduction

The continuous time portfolio optimization problem have been widely studied
after the works of Merton ([4], [5]). And many researchers consider various
realistic constraints such as borrowing constraints (see [1], [3], [2]). A negative
wealth constraint is a general version of borrowing constraints. This constraints
means that an agent can borrow partially against her future labor income (see
[6], [7]).

In the portfolio selection problem the Cobb-Douglas utility function is used
for considering the leisure choice and the optimal consumption ([7]). To focus
on the impact of negative constraints, I assume that the leisure rate process is
constant in the rest of the paper.

In this paper I investigate an optimal portfolio and consumption selection
problem of an investor who have a Cobb-Douglas utility function with negative
wealth constraints. And I use the martingale method for deriving the optimal
solution in the closed-form.
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2. The Financial Market Model

I consider a continuous-time financial market in which an investor can trade
two assets. There are one risk-free asset with constant interest rate r > 0 and one
risky asset St which follows the geometric Brownian motion dSt/St = µdt+σdBt,
where µ > r and σ > 0 are constants, and Bt is a standard Brownian motion
defined on the probability space (Ω,F ,P). Let {Ft}t≥0 be the augmentation

of the filtration generated by the standard Brownian motion {Bt}t≥0 under P .

The market price of risk is defined by θ , (µ− r)/σ.
Let πt be the the Ft-progressively measurable portfolio process and ct be the

nonnegative Ft-progressively measurable consumption process at time t. Fur-
thermore I assume that they satisfy the following integrability conditions:∫ t

0

π2
sds <∞, and

∫ t

0

csds <∞, for all t ≥ 0, almost surely (a.s.).

I also consider the leisure rate process lt < L̄ where a constant L̄ is the sum of
rates of labor and leisure at time t ≥ 0. So L̄− lt means the rate of work at time
t. Let εt > 0 be the agent’s labor income rate. Then the agent’s wealth process
xt follows

dxt =
[
rxt + πt(µ− r)− ct + εt(L̄− lt)

]
dt+ σπtdBt, (1)

with initial wealth x0 = x.
I assume that the agent has a Cobb-Douglas utility function of consumption

and leisure as follows:

u(ct, lt) ,
1

α

(l1−αt cαt )1−γ
∗

1− γ∗
, 0 < α < 1 and γ∗ > 0(γ∗ 6= 1), (2)

where γ∗ is the agent’s coefficient of relative risk aversion and α is a a constant
weight for consumption. If I assume that the leisure rate process is constant i.e.
lt = L and I define γ = 1− α(1− γ∗), then the utility function (2) becomes

uL(ct) = Lγ−γ
∗ c1−γt

1− γ
for t ≥ 0. (3)

And I define the Merton’s constant K > 0 such that

K , r +
ρ− r
γ

+
γ − 1

2γ2
θ2 > 0.

I also assume that the labor income rate ε is constant and there is a negative
wealth constraint given by

xt ≥ −ν
ε

r
, for all t ≥ 0 and ν ∈ [0, 1]. (4)

3. The Optimization Problem

The state price density H(t) is defined as

H(t) , exp

{
−
(
r +

1

2
θ2
)
t− θB(t)

}
.
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From the wealth process (1), I can derive the budget constraint as follows:

E
[∫ ∞

0

Ht(ct − ε)dt
]
≤ x. (5)

And I define the agent’s optimization problem as follows:

V (x) = sup
(c,π)∈A(x)

E
[∫ ∞

0

e−ρtuL(ct)dt

]
with the negative wealth constraint (4). Here ρ > 0 is a subjective discount
rate, A(x) is an admissible set of pairs (c, π) at x, and the utility uL(ct) is a
Cobb-Douglas utility function which is defined in (3).

Using a Lagrange multiplier λ > 0, I define a dual value function as follow:

Ṽ (λ) = sup
c

E
[∫ ∞

0

e−ρtuL(ct)dt− λ
∫ ∞
0

Ht(ct − ε)dt
]

(6)

= sup
c

E
[∫ ∞

0

e−ρt
{
uL(ct)dt− λeρtHt(ct − ε)

}
dt

]
(7)

= E
[∫ ∞

0

e−ρtũL(yt)dt

]
, (8)

where ũL(·) is the dual utility function of the Cobb-Douglas utility and yt ,
λeβtHt. The dual utility ũL(y) is defined by as follows:

ũL(y) = sup
c
{uL(c)− y(c− ε)}

=
γ

1− γ

(
Lγ−γ

∗
) 1

γ

y−
1−γ
γ + yε

=
γ

1− γ
L∗y−

1−γ
γ + yε,

where L∗ = L1− γ∗
γ .

Now I define a function

φ(t, y) , E
[∫ ∞

t

e−ρtũL(ys)ds

∣∣∣∣ yt = y

]
.

Using the Feymann-Kac formula, I can derive the partial differential equation
as follows:

Lφ(t, y) + e−ρtũL(y) = 0,

where the partial differential operator is given by

L :=
∂

∂t
+ (ρ− r)y ∂

∂y
+

1

2
θ2y2

∂2

∂y2
.

If I conjecture that φ(t, y) = e−ρtv(y), then I am able to derive the following
equation,

1

2
θ2y2v′′(y) + (ρ− r)yv′(y)− βv(y) + ũL(y) = 0. (9)
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Theorem 3.1. The value function V (x) is obtained by

V (x) = C1(1−m+)ξm+ +
L∗

(1− γ)K
ξ−

1−γ
γ ,

where

C1 =

(
(ν − 1)

ε

r
+
L∗

K
ŷ−

1
γ

)
ŷ1−m+

m+
,

ŷ =

(
γ(1− ν)(m+ − 1)

γ(m+ − 1) + 1

ε

r

K

L∗

)−γ
,

and ξ is determined from the algebraic equation

x = −m+C1ξ
m+−1 +

L∗

K
ξ−

1
γ − ε

r
.

Proof. A general solution of the equation (9) is given as

v(y) = C1y
m+ +

γ

1− γ
L∗

K
y−

1−γ
γ +

ε

r
y,

where C1 is constant to be determined, and m+ > 1 is a root of the quadratic

equation f(m) =
1

2
θ2m2 +

(
ρ− r − 1

2
θ2
)
m− β = 0. The negative wealth con-

straint (4) implies two free boundary conditions,

v′(ŷ) = ν
ε

r
, v′′(ŷ) = 0, (10)

where ŷ > 0 is the dual value corresponding to the wealth level −ν ε
r

. From the

conditions (10), I obtain that

ŷ =

(
γ(1− ν)(m+ − 1)

γ(m+ − 1) + 1

ε

r

K

L∗

)−γ
and

C1 =

(
(ν − 1)

ε

r
+
L∗

K
ŷ−

1
γ

)
ŷ1−m+

m+
.

Using the Legendre inverse transform formula,

V (x) = inf
y>0
{v(y) + yx},

I obtain the following value function

V (x) = C1(1−m+)ξm+ +
L∗

(1− γ)K
ξ−

1−γ
γ ,

where ξ is determined from the algebraic equation

x = −m+C1ξ
m+−1 +

L∗

K
ξ−

1
γ − ε

r
.

�
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Theorem 3.2. The optimal consumption and portfolio pair (c∗t , π
∗
t ) is given by

c∗t = L∗ξ
− 1

γ

t

and

π∗t =
θ

σ

(
C1m+(m+ − 1)ξ

m+−1
t +

L∗

γK
ξ
− 1

γ

t

)
,

where ξt is determined from the following equation,

x = −m+C1ξ
m+−1 +

L∗

K
ξ−

1
γ − ε

r
.

Proof. From the proof of Theorem 3.1 we know that the optimal strategies are
occurred when the equation, x = −v′(y∗) is satisfied. By applying Itô formula to
this equation and comparing with equation (1), I obtain the optimal consumption
and portfolio pair (c∗t , π

∗
t ) as follows:

c∗t = −rv′(y∗) + (ρ− r + θ2)y∗v′′(y∗) +
1

2
θ2y∗2v′′′(y∗) + I,

π∗t =
θ

σ
y∗v′′(y∗).

Since v(y) = C1y
m+ +

γ

1− γ
L∗

K
y−

1−γ
γ +

ε

r
y, I can derive (c∗t , π

∗
t ) as follows:

c∗t = L∗ξ
− 1

γ

t

and

π∗t =
θ

σ

(
C1m+(m+ − 1)ξ

m+−1
t +

L∗

γK
ξ
− 1

γ

t

)
,

where ξt is determined from the following equation,

x = −m+C1ξ
m+−1 +

L∗

K
ξ−

1
γ − ε

r
.

�
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