• 제목/요약/키워드: Optimality Conditions

검색결과 146건 처리시간 0.029초

OPTIMAL CONTROL OF GLOBAL PRESS FOR AN ADSORBATE-INDUCED PHASE TRANSITION MODEL

  • Ryu, Sang-Uk
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.543-553
    • /
    • 2008
  • This paper is concerned with the optimal control problem of global press for an adsorbate-induced phase transition model. That is, we show the existence of the optimal control and derive the optimality conditions. Moreover, we obtain the uniqueness of the optimal control.

  • PDF

OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.371-377
    • /
    • 2015
  • We consider a nondifferentiable robust optimization problem, which has a maximum function of continuously differentiable functions and support functions as its objective function, continuously differentiable functions as its constraint functions. We prove optimality conditions for the nondifferentiable robust optimization problem. We formulate a Wolfe type dual problem for the nondifferentiable robust optimization problem and prove duality theorems.

THE LAYOUT PROBLEM OF TWO KINDS OF GRAPH ELEMENTS WITH PERFORMANCE CONSTRAINTS AND ITS OPTIMALITY CONDITIONS

  • ZHANG XU;LANG YANHUAI;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.209-224
    • /
    • 2006
  • This paper presents an optimization model with performance constraints for two kinds of graph elements layout problem. The layout problem is partitioned into finite subproblems by using graph theory and group theory, such that each subproblem overcomes its on-off nature about optimal variable. Furthermore each subproblem is relaxed and the continuity about optimal variable doesn't change. We construct a min-max problem which is locally equivalent to the relaxed subproblem and develop the first order necessary and sufficient conditions for the relaxed subproblem by virtue of the min-max problem and the theories of convex analysis and nonsmooth optimization. The global optimal solution can be obtained through the first order optimality conditions.

DUALITY AND SUFFICIENCY IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH INVEXITY

  • Kim, Do-Sang;Lee, Hyo-Jung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권2호
    • /
    • pp.101-108
    • /
    • 2009
  • In this paper, we introduce generalized multiobjective fractional programming problem with two kinds of inequality constraints. Kuhn-Tucker sufficient and necessary optimality conditions are given. We formulate a generalized multiobjective dual problem and establish weak and strong duality theorems for an efficient solution under generalized convexity conditions.

  • PDF

CONTINUOUS PROGRAMMING CONTAINING SUPPORT FUNCTIONS

  • Husain, I.;Jabeen, Z.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.75-106
    • /
    • 2008
  • In this paper, we derive necessary optimality conditions for a continuous programming problem in which both objective and constraint functions contain support functions and is, therefore, nondifferentiable. It is shown that under generalized invexity of functionals, Karush-Kuhn-Tucker type optimality conditions for the continuous programming problem are also sufficient. Using these optimality conditions, we construct dual problems of both Wolfe and Mond-Weir types and validate appropriate duality theorems under invexity and generalized invexity. A mixed type dual is also proposed and duality results are validated under generalized invexity. A special case which often occurs in mathematical programming is that in which the support function is the square root of a positive semidefinite quadratic form. Further, it is also pointed out that our results can be considered as dynamic generalizations of those of (static) nonlinear programming with support functions recently incorporated in the literature.

  • PDF

ROBUST SEMI-INFINITE INTERVAL-VALUED OPTIMIZATION PROBLEM WITH UNCERTAIN INEQUALITY CONSTRAINTS

  • Jaichander, Rekha R.;Ahmad, Izhar;Kummari, Krishna
    • Korean Journal of Mathematics
    • /
    • 제30권3호
    • /
    • pp.475-489
    • /
    • 2022
  • This paper focuses on a robust semi-infinite interval-valued optimization problem with uncertain inequality constraints (RSIIVP). By employing the concept of LU-optimal solution and Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ), necessary optimality conditions are established for (RSIIVP) and then sufficient optimality conditions for (RSIIVP) are derived, by using the tools of convexity. Moreover, a Wolfe type dual problem for (RSIIVP) is formulated and usual duality results are discussed between the primal (RSIIVP) and its dual (RSIWD) problem. The presented results are demonstrated by non-trivial examples.

ON NONSMOOTH OPTIMALITY THEOREMS FOR ROBUST OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Son, Pham Tien
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.287-301
    • /
    • 2014
  • In this paper, we prove a necessary optimality theorem for a nonsmooth optimization problem in the face of data uncertainty, which is called a robust optimization problem. Recently, the robust optimization problems have been intensively studied by many authors. Moreover, we give examples showing that the convexity of the uncertain sets and the concavity of the constraint functions are essential in the optimality theorem. We present an example illustrating that our main assumptions in the optimality theorem can be weakened.

On the Optimality of the Multi-Product EOQ Model with Pricing Consideration

  • Shin, Ho-Jung;Park, Soo-Hoon
    • Management Science and Financial Engineering
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2012
  • Two previous studies that attempted to generalize the deterministic joint pricing-inventory decision model are reevaluated. We prove analytically that even in a single-product environment, the EOQ model with constant priceelastic demand cannot find optimal solutions unless two optimality conditions associated with price elasticity and demand magnitude are satisfied. Due to the inexistence of the general optimality for the problem, demand function and price elasticity must be evaluated and bounded properly to use the methods proposed in the previous studies.

MULTIOBJECTIVE VARIATIONAL PROGRAMMING UNDER GENERALIZED VECTOR VARIATIONAL TYPE I INVEXITY

  • Kim, Moon-Hee
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.179-196
    • /
    • 2004
  • Mond-Weir type duals for multiobjective variational problems are formulated. Under generalized vector variational type I invexity assumptions on the functions involved, sufficient optimality conditions, weak and strong duality theorems are proved efficient and properly efficient solutions of the primal and dual problems.