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ROBUST SEMI-INFINITE INTERVAL-VALUED OPTIMIZATION

PROBLEM WITH UNCERTAIN INEQUALITY CONSTRAINTS

Rekha R. Jaichander, Izhar Ahmad, and Krishna Kummari∗

Abstract. This paper focuses on a robust semi-infinite interval-valued optimiza-
tion problem with uncertain inequality constraints (RSIIVP). By employing the
concept of LU-optimal solution and Extended Mangasarian-Fromovitz Constraint
Qualification (EMFCQ), necessary optimality conditions are established for (RSI-
IVP) and then sufficient optimality conditions for (RSIIVP) are derived, by using
the tools of convexity. Moreover, a Wolfe type dual problem for (RSIIVP) is for-
mulated and usual duality results are discussed between the primal (RSIIVP) and
its dual (RSIWD) problem. The presented results are demonstrated by non-trivial
examples.

1. Introduction

Charnes et al. [12], developed the theory of semi-infinite programming in 1962.
The class of semi-infinite programming problem is an important class of constrained
optimization problem in which the number of decision variables is finite, but the
number of constraints is infinite. Semi-infinite programming problem, has been the
area of interest for many researchers in the recent past, as this structure spontaneously
occur in many mathematical applications viz., engineering design [29], air pollution
control [36], economics [37], finance [21], optimal control problems [30], robotics [17],
geometry and optimization under uncertainty [3]. Some of the latest advances in
semi-infinite programming can be seen in [22,23,35].

A mathematical programming problem under data uncertainty refers to robust op-
timization. In recent years, robust optimization has gained more importance due to
its ability, tractability and applicability while handling the “uncertain-but bounded”
non-stochastic optimization problems. The objective of the robust optimization prob-
lem is to arrive at the best solution for entities “immunized” against uncertainties.
For a comprehensive study of robust optimization, the readers are advised to refer
to [5–7]. Robust optimization has a wide spectrum of real-world applications, in par-
ticular, finance [15], energy [38], supply chain [28], healthcare [32], engineering [16],
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scheduling [18], machine learning [11], queueing networks [4] and revenue manage-
ment [8] etc.

Interval-valued optimization problems serve as a substitute option to tackle uncer-
tain parameters that cannot be calculated accurately. It is based on interval coeffi-
cients, which are taken as closed intervals. Many advances related to the theory of
interval-valued optimization problems were analyzed in detail, readers are advised to
refer [13,14]. The interval-based models have various applications in real life domains
namely inventory [31], production planning [27], financial and corporate planning [25],
healthcare and hospital planning [34] etc.

In the recent past, several methods have been adopted to deal with interval-valued
optimization problems. Bhurjee and Panda [9] designed a framework to evaluate an
efficient solution for an interval-valued optimization problem. Ahmad et al. [1] have
investigated sufficient optimality conditions for LU -optimal solution with interval-
valued optimization problems, based on generalized (p, r)-ρ-(η, θ)- invexity. To relate
to LU -optimal solutions of primal and dual problems, they deduced Wolfe and Mond-
Weir type duals, using theorems of weak, strong and strict converse duality. Later,
Jayswal et al. [19] has presented a new class of interval-valued variational-like inequal-
ity problem, using the notion of LU and weakly LU -optimal solutions. In [33], Singh
et al. have employed weakly continuously differentiability, to develop the necessary
and sufficient optimality conditions for Karush–Kuhn–Tucker type in which, objective
and constraint functions are assumed to be interval-valued. Zhang et al. [39] focused
on some fundamental characterizations of an interval-valued pseudo-linear function,
based on the properties of pseudo-linearity. They also obtained characterizations for
the solution set of an interval-valued pseudo-linear optimization problem. Kummari
and Ahmad [24] discussed sufficient optimality conditions, for non-smooth interval-
valued optimization problems via L-invex-infine functions, using the concepts of LU -
optimal solution. They also deduced duality results for a Wolfe type dual problem.
Furthermore, sufficient optimality conditions and Mond-Weir type duality results, for
an interval-valued optimization problem with vanishing constraints, related to the
concepts of generalized convexity were derived by Ahmad et al. [2].

Motivated by the above developments, we dedicate this paper to analyze some
new results related to robust semi-infinite interval-valued optimization problem (RSI-
IVP). This study is categorized in the following way: In Section 2, a few prelimi-
nary and basic notions are specified. In Section 3, we discuss robust necessary LU -
optimality conditions, based on the assumption of extended Mangasarian–Fromovitz
constraint qualification (EMFCQ) and derive robust sufficient LU -optimality condi-
tions for (RSIIVP). In Section 4 we propose a duality model of Wolfe type, and duality
results which hold between (RSIIVP) and its dual (RSIWD) are examined. Finally,
the conclusion is presented in Section 5.

2. Preliminaries

An n-dimensional Euclidean space is Rn and its non-negative orthant is Rn
+. The

set of all closed bounded intervals in R is I. Suppose I1 = [ηL, ηU ], I2 = [γL, γU ] ∈ I,
then

(i) I1 + I2 = {η + γ : η ∈ I1 and γ ∈ I2} = [ηL + γL, ηU + γU ],
(ii) −I1 = {−η : η ∈ I1} = [−ηU ,−ηL],
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(iii) I1 − I2 = I1 + (−I2) = [ηL − γU , ηU − γL],
(iv) c+ I1 = {c+ η : η ∈ I1} = [c+ ηL, c+ ηU ],

(v) cI1 = {cη : η ∈ I1} =

{
[cηL, cηU ], if c ≥ 0,

[cηU , cηL], if c < 0,

where c is a real number.
For I1 = [ηL, ηU ] and I2 = [γL, γU ], the partial ordering ≤LU on I is defined as
I1 ≤LU I2 if and only if ηL ≤ γL and ηU ≤ γU . Moreover, we represent I1 <LU I2 if
and only if I1 ≤LU I2 along with I1 6= I2. In the other words, I1 <LU I2 if and only if

ηL < γL, ηU < γU ,

or ηL ≤ γL, ηU < γU ,

or ηL < γL, ηU ≤ γU .

Definition 2.1. A function ζ = [ζL, ζU ] : Rn → I is said to be convex if for all
t ∈ [0, 1],

(1) ζ[(1− t)α + tβ] ≤LU (1− t)ζ(α) + tζ(β), ∀ α, β ∈ Rn.

The following example demonstrates convex functions for an interval valued func-
tions.

Example 2.2. Let ζ(α) = [|α|, |α|+ 2], where α ∈ Rn.
By (1), it follows that

(2) ζL[(1− t)α + tβ] ≤ (1− t)ζL(α) + tζL(β),

(3) ζU [(1− t)α + tβ] ≤ (1− t)ζU(α) + tζU(β).

Consider the following equations:

ζL[(1− t)α + tβ] = |(1− t)α + tβ|,(4)

ζU [(1− t)α + tβ] = |(1− t)α + tβ|+ 2.(5)

By triangle inequality and t, (1− t) ≥ 0, (4), (5) reduces to

ζL[(1− t)α + tβ] ≤ (1− t)|α|+ t|β|,(6)

ζU [(1− t)α + tβ] ≤ (1− t)(|α|+ 2) + t(|β|+ 2).(7)

Therefore, from the above inequalities, ζ is a convex function on Rn.

Definition 2.3. A function ζ = [ζL, ζU ] : Rn → I is said to be strictly convex if
for all t ∈ (0, 1),

(8) ζ[(1− t)α + tβ] <LU (1− t)ζ(α) + tζ(β), ∀ α, β ∈ Rn.

The following example demonstrates strictly convex functions for an interval valued
functions.
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Example 2.4. Let ζ(α) = [α2, α2 + 2], where α ∈ Rn.
Let α, β be such that α 6= β and t ∈ (0, 1).
By (8), it follows that

ζL[(1− t)α + tβ] < (1− t)ζL(α) + tζL(β)

ζU [(1− t)α + tβ] < (1− t)ζU(α) + tζU(β),
(9)

or

ζL[(1− t)α + tβ] ≤ (1− t)ζL(α) + tζL(β)

ζU [(1− t)α + tβ] < (1− t)ζU(α) + tζU(β),
(10)

or

ζL[(1− t)α + tβ] < (1− t)ζL(α) + tζL(β)

ζU [(1− t)α + tβ] ≤ (1− t)ζU(α) + tζU(β).
(11)

Consider the following equations:

ζL[(1− t)α + tβ] = (1− t)2α2 + t2β2 + 2t(1− t)αβ.(12)

(13) ζU [(1− t)α + tβ] = (1− t)2α2 + t2β2 + 2t(1− t)αβ + 2t+ 2(1− t).
Since α 6= β, (α− β)2 > 0. This implies,

(14) α2 + β2 > 2αβ.

Using (14) in (13) and (12) we obtain

(1− t)2α2 + t2β2 + 2t(1− t)αβ < (1− t)2α2 + t2β2 + t(1− t)(α2 + β2),

(1− t)2α2 + t2β2 + 2t(1− t)αβ + 2t+ 2(1− t) <
(1− t)2α2 + t2β2 + t(1− t)(α2 + β2) + 2t+ 2(1− t).

Therefore, from the above inequalities, ζ is a strictly convex function on Rn.

Let us study the below given semi-infinite interval-valued optimization problem in
the absences of data uncertainty:

(SIIVP) min
α∈Rn

ζ(α) = [ζL(α), ζU(α)]

subject to

Ψj(α) ≤ 0, ∀ j ∈ J,

where ζL, ζU : Rn → R and Ψj : Rn → R, j ∈ J are differentiable functions with the
first order partial derivatives being continuous and J is an arbitrary index set(possible
infinite).
The semi-infinite interval-valued optimization problem with data uncertainty in the
constraints as shown in the below mentioned problem:

(USIIVP) min
α∈Rn

ζ(α) = [ζL(α), ζU(α)]

subject to

Ψj(α, λj) ≤ 0, ∀ j ∈ J,

where ζL, ζU : Rn → R and Ψj : Rn × Rq → R are differentiable functions with the
first order partial derivatives being continuous and λj ∈ Rq is an uncertain parameter
which belongs to the convex compact set Λj ⊂ Rq, j ∈ J . The uncertainty set-valued
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function Λ : J ⇒ Rq, is given Λ(j) := Λj , ∀ j ∈ J , so,

graph(Λ) = {(j, λj) : λj ∈ Λj, j ∈ J}
and λ ∈ Λ implies that λ is a choice of Λ that is, λ : J ⇒ Rq and λj ∈ Λj , ∀ j ∈ J .
The below mentioned problem (RSIIVP) is robust counterpart of (USIIVP):

(RSIIVP) min
α∈Rn

ζ(α) = [ζL(α), ζU(α)]

subject to

Ψj(α, λj) ≤ 0, ∀ λj ∈ Λj,∀ j ∈ J.
The robust feasible set H of (RSIIVP) is explained as follows:

H = {α ∈ Rn : Ψj(α, λj) ≤ 0, ∀ j ∈ J, ∀ λj ∈ Λj}.

Definition 2.5. The robust feasible point ᾱ is called a robust LU-optimal solution
of (RSIIVP), if there does not exists a robust feasible solution α of (RSIIVP) such
that ζ(α) <LU ζ(ᾱ).

All through this manuscript, we assume that the following assumptions hold:

(B1) J is a compact metric space.

(B2) Λ is compact valued and upper semicontinuous on J .

(B3) Ψjn(αn, λjn)→ Ψj(α, λj), whenever jn ∈ J → j ∈ J , λjn ∈ Λjn → λj ∈ Λj and
αn ∈ Rn → α ∈ Rn as n→∞.

(B4) ∇Ψjn(αn, λjn) → ∇Ψj(α, λj), whenever jn ∈ J → j ∈ J , λjn ∈ Λjn → λj ∈ Λj

and αn ∈ Rn → α ∈ Rn as n→∞.

3. Robust Necessary and Sufficient Conditions

For α ∈ H, we split J into two index sets.

J = J1(α) ∪ J2(α),

where
J1(α) = {j ∈ J : ∃ λj ∈ Λj such that Ψj(α, λj) = 0},

J2(α) = J \ J1(α),

Λj(α) = {λj ∈ Λj : Ψj(α, λj) = 0}.

Definition 3.1 (Bonnan’s and Shapiro [10], Jeyakumar et al. [20]). The Extended
Mangasarian-Fromovitz Constraints Qualification (EMFCQ) holds at α ∈ H if and
only if d ∈ Rn such that ∇αΨj(α, λj)

Td < 0,∀ j ∈ J1(α),∀ λj ∈ Λj(α).

Lee and Lee ( [26], corollary 1), established the robust necessary optimality con-
ditions for a weakly robust efficient solution of robust semi-infinite multi-objective
optimization problem. In the view point of Lee and Lee ( [26], corollary 1), if we con-
sider l = 2, then we arrive at the following robust necessary LU-optimality conditions
for (RSIIVP).
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Theorem 3.2 (Robust Necessary LU-Optimality Conditions). Let ᾱ be a robust
LU-optimal solution of (RSIIVP). Suppose that Ψj(α, .) is concave on Λj, for each
α ∈ Rn and for each j ∈ J . Also, assume that (B1), (B2), (B3), (B4) and (EMFCQ)

holds at ᾱ. Then there exist ρ̄L ≥ 0 , ρ̄U ≥ 0, not all zero, (ξ̄j)j∈J ∈ R(J)
+ and λ̄j ∈ Λj,

j ∈ J such that
ρ̄L + ρ̄U = 1,

ρ̄L∇ζL(ᾱ) + ρ̄U∇ζU(ᾱ) +
∑
j∈J

ξ̄j∇αΨj(ᾱ, λ̄j) = 0,

and
ξ̄jΨj(ᾱ, λ̄j) = 0, j ∈ J.

In the next theorem, we discuss robust sufficient LU-optimality conditions for
(RSIIVP).

Theorem 3.3 (Robust Sufficient LU-Optimality conditions). Let ᾱ ∈ H. Suppose
that ζL, ζU : Rn → R be convex functions. Let Ψj(., λj) be convex on Rn, for each
λj ∈ Λj and for each j ∈ J . Suppose that there exist ρ̄L ≥ 0 , ρ̄U ≥ 0, not all

zero, (ξ̄j)j∈J ∈ R(J)
+ and λ̄j ∈ Λj , j ∈ J such that

(15) ρ̄L∇ζL(ᾱ) + ρ̄U∇ζU(ᾱ) +
∑
j∈J

ξ̄j∇αΨj(ᾱ, λ̄j) = 0,

(16) ξ̄jΨj(ᾱ, λ̄j) = 0, j ∈ J.
Then ᾱ is a robust LU-optimal solution of (RSIIVP).

Proof. : Suppose ᾱ is not a robust LU-optimal solution of (RSIIVP), then there
exists α∗ ∈ H, such that

ζ(α∗) <LU ζ(ᾱ).

That is,

ζL(α∗) < ζL(ᾱ)

ζU(α∗) < ζU(ᾱ),

or

ζL(α∗) ≤ ζL(ᾱ)

ζU(α∗) < ζU(ᾱ),

or

ζL(α∗) < ζL(ᾱ)

ζU(α∗) ≤ ζU(ᾱ).

Since ρ̄L ≥ 0 , ρ̄U ≥ 0, then the above inequalities together yield

(17) ρ̄LζL(α∗) + ρ̄UζU(α∗) < ρ̄LζL(ᾱ) + ρ̄UζU(ᾱ).

By convexity assumption of ζL, ζU and Ψj(., λj) , j ∈ J , for any α ∈ Rn, we have

(18) ζL(α)− ζL(ᾱ) ≥ ∇ζL(ᾱ)T (α− ᾱ),

(19) ζU(α)− ζU(ᾱ) ≥ ∇ζU(ᾱ)T (α− ᾱ),

(20) Ψj(α, λ̄j)−Ψj(ᾱ, λ̄j) ≥ ∇αΨj(ᾱ, λ̄j)
T (α− ᾱ).
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The inequalities (18) and (19) together with ρ̄L ≥ 0 , ρ̄U ≥ 0 gives

(21) ρ̄L(ζL(α)−ζL(ᾱ))+ρ̄U(ζU(α)−ζU(ᾱ)) ≥ ρ̄L∇ζL(ᾱ)T (α−ᾱ)+ρ̄U∇ζU(ᾱ)T (α−ᾱ).

Multiplying (20) by ξ̄j ≥ 0, j ∈ J and by feasibility of α ∈ H , we get

(22) 0 ≥ ξ̄jΨj(α, λ̄j) = ξ̄jΨj(α, λ̄j)− ξ̄jΨj(ᾱ, λ̄j) ≥ ξ̄j∇αΨj(ᾱ, λ̄j)
T (α− ᾱ).

By using (15), the inequality(21) implies

ρ̄L(ζL(α)− ζL(ᾱ)) + ρ̄U(ζU(α)− ζU(ᾱ)) ≥ −
∑
j∈J

ξ̄j∇αΨj(ᾱ, λ̄j)
T (α− ᾱ).

Above inequality along with (22) gives

ρ̄LζL(α) + ρ̄UζU(α) ≥ ρ̄LζL(ᾱ) + ρ̄UζU(ᾱ).

This is contrary to (17). Thus, we can conclude the validity of the theorem.

The following is a simple example which demonstrates Theorem 3.3.

Example 3.4. Let us examine the uncertain semi-infinite interval-valued optimiza-
tion problem.

(USIIVP-1) min ζ(α) = [ζL(α), ζU(α)]

subject to

Ψj(α, λ̄j) = jα2 − λ̄jα ≤ 0,∀ j ∈ J,

where ζL(α) = α, if α ≥ 0, ζU(α) = α2 + 2, if α ≥ 0, and the data λ̄j is uncertain,
λ̄j ∈ Λj = [−j + 2, j + 2] and j ∈ J = [0, 1]. The robust counter part of (USIIVP-1)
can be defined as follows:

(RSIIVP-1) min ζ(α) = [α, α2 + 2]

subject to

Ψj(α, λ̄j) = jα2 − λ̄jα ≤ 0,∀ λ̄j ∈ Λj,∀ j ∈ J.

One can validate the robust feasible set is [0, 1]. Let ᾱ = 0, ρ̄L = 1/2, ρ̄U = 1/2. Let

(ξ̄j)j∈J ∈ R(J)
+ be such that ξ̄j = 0, 0 ≤ j < 1 and ξ̄1 = 1/2. Let λ̄j ∈ [−j + 2, j + 2],

∀ j ∈ [0, 1) and λ̄1 = 1. Clearly, J1(0) = [0, 1] and Λ1(0) = {1}. For d = 1,
∇αΨ1(0, 1)Td = −1. So, the (EMFCQ) holds at ᾱ. Then, one can see that

ρ̄L∇ζL(ᾱ) + ρ̄U∇ζU(ᾱ) +
∑
j∈J

ξ̄j∇αΨj(ᾱ, λ̄j) = 0,

and

ξ̄jΨj(ᾱ, λ̄j) = 0, j ∈ J.

Also, it is easy to observe that ζL(α) = α, ζU(α) = α2+2 and Ψj(α, λ̄j) = jα2−λ̄jα ≤
0,∀ j ∈ J , λ̄j ∈ Λj are convex functions on R. Therefore, by Theorem 3.3, ᾱ = 0 is a
robust LU-optimal solution of (RSIIVP-1).
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Figure 1. Graphical view of the objective function of the problem
(USIIVP-1).

4. Wolfe Type Dual Problem

Let us examine the subsequent Wolfe type dual problem for (RSIIVP):

(RSIWD) max
(β,λ,ρL,ρU ,ξ)

ζ(β) =

{
[ζL(β), ζU(β)] +

∑
j∈J

ξjΨj(β, λj)

}

subject to

(23) ρL∇ζL(β) + ρU∇ζU(β) +
∑
j∈J

ξj∇αΨj(β, λj) = 0,

(24) ρL + ρU = 1, ρL, ρU ≥ 0,

(25) (ξj)j∈J ∈ R(J)
+ , λj ∈ Λj, j ∈ J.

The robust feasible set of (RSIWD) can be represented as HD, which is the set of

all points of the form (β, λ, ρL, ρU , ξ) ∈ Rn × Λ × R+ × R+ × R(J)
+ that satisfies the

constraints of dual problem.
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Definition 4.1. The robust feasible point (β̄, λ̄, ρ̄L, ρ̄U , ξ̄) ∈ HD is called a ro-
bust LU-optimal solution of (RSIWD), if there does not exists a robust feasible so-
lution (β, λ, ρL, ρU , ξ) of (RSIWD), such that ζ(β̄) +

∑
j∈J

ξ̄j Ψj(β̄, λ̄j) <LU ζ(β) +∑
j∈J

ξjΨj(β, λj).

In the following part of this section, we discuss duality results between (RSIIVP) and
(RSIWD).

Theorem 4.2 (Weak Duality). Let ζL, ζU : Rn → R be convex functions and
let Ψj(., λj) be convex on Rn, for each λj ∈ Λj and for each j ∈ J . Let α and
(β, λ, ρL, ρU , ξ) be the robust feasible solutions of (RSIIVP) and (RSIWD), respec-
tively. Then the following inequality cannot hold:

ζ(α) <LU ζ(β) +
∑
j∈J

ξjΨj(β, λj).

Proof. : On the contrary assume,

ζ(α) <LU ζ(β) +
∑
j∈J

ξjΨj(β, λj).

That is,

ζL(α) < ζL(β) +
∑
j∈J

ξjΨj(β, λj)

ζU(α) < ζU(β) +
∑
j∈J

ξjΨj(β, λj),

or

ζL(α) ≤ ζL(β) +
∑
j∈J

ξjΨj(β, λj)

ζU(α) < ζU(β) +
∑
j∈J

ξjΨj(β, λj),

or

ζL(α) < ζL(β) +
∑
j∈J

ξjΨj(β, λj)

ζU(α) ≤ ζU(β) +
∑
j∈J

ξjΨj(β, λj).

Since ρL ≥ 0 , ρU ≥ 0 and ρL + ρU = 1, then the above inequalities together yield

(26) ρLζL(α) + ρUζU(α) < ρLζL(β) + ρUζU(β) +
∑
j∈J

ξjΨj(β, λj).

By convexity assumption of ζL, ζU and Ψj(., λj) , j ∈ J , we have

(27) ζL(α)− ζL(β) ≥ ∇ζL(β)T (α− β),

(28) ζU(α)− ζU(β) ≥ ∇ζU(β)T (α− β),

(29) Ψj(α, λj)−Ψj(β, λj) ≥ ∇αΨj(β, λj)
T (α− β).
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By inequalities (27) and (28) together with ρL ≥ 0 , ρU ≥ 0, gives

(30) ρL(ζL(α)−ζL(β))+ρU(ζU(α)−ζU(β)) ≥ ρL∇ζL(β)T (α−β)+ρU∇ζU(β)T (α−β).

Multiplying (29) by ξj ≥ 0, j ∈ J and by feasibility α ∈ H, we get

(31) −
∑
j∈J

ξjΨj(β, λj) ≥
∑
j∈J

ξj∇αΨj(β, λj)
T (α− β).

On adding (30) and (31), we have

ρL(ζL(α)− ζL(β)) + ρU(ζU(α)− ζU(β))−
∑
j∈J

ξjΨj(β, λj)

≥ ρL∇ζL(β)T (α− β) + ρU∇ζU(β)T (α− β) +
∑
j∈J

ξj∇αΨj(β, λj)
T (α− β).

Above inequality along with (23), gives

ρLζL(α) + ρUζU(α)

≥ ρLζL(β) + ρUζU(β) +
∑
j∈J

ξjΨj(β, λj).

This is contrary to (26). Thus, we can conclude the validity of the theorem.

We now re-explore Example 3.4 to demonstrate Theorem 4.2.

Example 4.3. Consider the following uncertain semi-infinite interval-valued opti-
mization problem:

(USIIVP-1) min ζ(α) = [ζL(α), ζU(α)]

subject to

Ψj(α, λj) = jα2 − λjα ≤ 0,∀ j ∈ J,
given the data uncertainty λj, λj ∈ Λj = [−j+ 2, j+ 2] and j = [0, 1]. Let ζL, ζU and
Ψj be as in Example 3.4. The robust counter part of (USIIVP-1) is described below:

(RSIIVP-1) min ζ(α) = [α, α2 + 2]

subject to

Ψj(α, λj) = jα2 − λjα ≤ 0,∀ λj ∈ Λj,∀ j ∈ J.
The robust feasible set of (RSIIVP-1) is H = [0, 1]. Let us describe the below shown
Wolfe type dual problem (RSIWD-1) for (RSIIVP-1):

(RSIWD-1) max
(β,λ,ρL,ρU ,ξ)

ζ(β) =

{
[β, β2 + 2] +

∑
j∈J

ξj(jβ
2 − λjβ)

}
subject to

ρL(1) + ρU(2β) +
∑
j∈J

ξj(2jβ − λj) = 0,

ρL + ρU = 1, ρL, ρU ≥ 0,

(ξj)j∈J ∈ R(J)
+ , λj ∈ Λj, j ∈ J.

Let α and (β, λ, ρL, ρU , ξ) be the robust feasible solutions of (RSIIVP-1) and (RSIWD-
1), respectively. Then, by the convexity of ζL, ζU and Ψj(., λj) on R, we see that

α− β = ζL(α)− ζL(β) ≥ (ζL)′(β)(α− β) = (α− β),
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(α2 + 2)− (β2 + 2) = ζU(α)− ζU(β) ≥ (ζU)′(β)(α− β) = 2β(α− β),

and for all j ∈ J ,

(jα2 − λjα)− (jβ2 − λjβ) = Ψj(α, λj)−Ψj(β, λj)

≥ Ψ′j(β, λj)(α− β) ≥ (2jβ − λj)(α− β).

Let ρL, ρU ≥ 0 with ρL + ρU = 1, (ξj)j∈J ∈ R(J)
+ . Then, we have

ρL(α− β) ≥ ρL(α− β),

ρU((α2 + 2)− (β2 + 2)) ≥ ρU(2β(α− β)),∑
j∈J

ξj[(jα
2 − λjα)− (jβ2 − λjβ)] ≥

∑
j∈J

ξj(2jβ − λj)(α− β).

Since α and (β, λ, ρL, ρU , ξ) are the robust feasible solutions of (RSIIVP-1) and (RSIWD-
1) respectively,

∑
j∈J

(jα2 − λjα) ≤ 0, ρL(1) + ρU(2β) +
∑
j∈J

ξj(2jβ − λj) = 0. So, we

obtain

ρLζL(α) + ρUζU(α)−

{
ρLζL(β) + ρUζU(β) +

∑
j∈J

ξjΨj(β, λj)

}
= ρL(α− β) + ρU((α2 + 2)− (β2 + 2))−

∑
j∈J

ξj(jβ
2 − λjβ)

≥ ρL(α− β) + ρU(2β(α− β)) +
∑
j∈J

ξj(jα
2 − λjα)−

∑
j∈J

ξj(jβ
2 − λjβ)

≥ ρL(α− β) + ρU(2β(α− β)) +
∑
j∈J

{
ξj[(jα

2 − λjα)− (jβ2 − λjβ)]

}

≥

{
ρL(1) + ρU(2β) +

∑
j∈J

ξj(2jβ − λj)

}
(α− β) ≥ 0.

Hence ρLζL(α)+ρUζU(α) ≥

{
ρLζL(β)+ρUζU(β)+

∑
j∈J

ξjΨj(β, λj)

}
. Therefore, weak

duality holds.

Theorem 4.4 (Strong Duality). Let ζL, ζU : Rn → R be convex functions and
let for each λj ∈ Λj and for each j ∈ J , Ψj(., λj) be convex on Rnand for each
α ∈ Rn and for each j ∈ J , Ψj(α, .) be concave on Λj. Assume that the (EMFCQ)
holds at ᾱ. Let ᾱ be a robust LU-optimal solution of (RSIIVP). Then there exists

(ρ̄L, ρ̄U , ξ̄, λ̄) ∈ R+ ×R+ ×R(J)
+ × Λ such that (ᾱ, λ̄, ρ̄L, ρ̄U , ξ̄) is a robust LU-optimal

solution of (RSIWD).

Proof. : Let ᾱ be a robust LU-optimal solution of (RSIIVP). Then by Theorem

3.2, there exist ρ̄L ≥ 0 , ρ̄U ≥ 0, not all zero, (ξ̄j)j∈J ∈ R(J)
+ and λ̄j ∈ Λj, j ∈ J , such

that
ρ̄L + ρ̄U = 1,

ρ̄L∇ζL(ᾱ) + ρ̄U∇ζU(ᾱ) +
∑
j∈J

ξ̄j∇αΨj(ᾱ, λ̄j) = 0,

(32) ξ̄jΨj(ᾱ, λ̄j) = 0, j ∈ J.
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Hence, (ᾱ, λ̄, ρ̄L, ρ̄U , ξ̄) is a robust feasible solution of (RSIWD). Suppose (ᾱ, λ̄, ρ̄L, ρ̄U , ξ̄)
is not a robust LU-optimal solution of (RSIWD). Then there exists a robust feasible
solution (β̄, λ̄, ρ̄L, ρ̄U , ξ̄) of (RSIWD), such that

(33) ζ(ᾱ) +
∑
j∈J

ξ̄jΨj(ᾱ, λ̄j) <LU ζ(β̄) +
∑
j∈J

ξ̄jΨj(β̄, λ̄j).

By using (32), (33) gives

ζ(ᾱ) <LU ζ(β̄) +
∑
j∈J

ξ̄jΨj(β̄, λ̄j).

which is contrary to the theorem of weak duality 4.2. Thus, we can conclude the
validity of the theorem.

Theorem 4.5 (Strict Converse Duality). Let ᾱ, (β̄, λ̄, ρ̄L, ρ̄U , ξ̄) be the robust fea-
sible solutions of (RSIIVP) and (RSIWD), respectively. Assume ζL, ζU : Rn → R are
strictly convex and Ψj(., λj) is convex on Rn, for each λj ∈ Λj, for each j ∈ J and

(34) ρ̄LζL(ᾱ) + ρ̄UζU(ᾱ) ≤ ρ̄LζL(β̄) + ρ̄UζU(β̄) +
∑
j∈J

ξ̄jΨj(β̄, λ̄j),

then ᾱ = β̄.

Proof. : On the contrary assume, ᾱ 6= β̄. Since (β̄, λ̄, ρ̄L, ρ̄U , ξ̄) ∈ HD, satisfies the
relations (23) to (25). That is,

ρ̄L∇ζL(β̄) + ρ̄U∇ζU(β̄) +
∑
j∈J

ξ̄j∇αΨj(β̄, λ̄j) = 0,

ρ̄L + ρ̄U = 1, ρ̄L, ρ̄U ≥ 0,

ξ̄j ∈ R(J)
+ , j ∈ J, λ̄j ∈ Λj.

By strict convexity assumption of ζL, ζU and convexity assumption of Ψj(., λ̄j) , j ∈ J ,
we have

(35) ζL(ᾱ)− ζL(β̄) > ∇ζL(β̄)T (ᾱ− β̄),

(36) ζU(ᾱ)− ζU(β̄) > ∇ζU(β̄)T (ᾱ− β̄),

(37) Ψj(ᾱ, λ̄j)−Ψj(β̄, λ̄j) ≥ ∇αΨj(β̄, λ̄j)
T (ᾱ− β̄).

By inequalities (35) and (36) together with ρ̄L, ρ̄U ≥ 0, gives

(38) ρ̄L(ζL(ᾱ)−ζL(β̄))+ρ̄U(ζU(ᾱ)−ζU(β̄)) > ρ̄L∇ζL(β̄)T (ᾱ−β̄)+ρ̄U∇ζU(β̄)T (ᾱ−β̄).

Multiplying (37) by ξ̄j ≥ 0, j ∈ J and feasibility of ᾱ ∈ H, we get

(39) −
∑
j∈J

ξ̄jΨj(β̄, λ̄j) ≥
∑
j∈J

ξ̄j∇αΨj(β̄, λ̄j)
T (ᾱ− β̄).

On adding (38) and (39), we have

ρ̄L(ζL(ᾱ)− ζL(β̄)) + ρ̄U(ζU(ᾱ)− ζU(β̄))−
∑
j∈J

ξ̄jΨj(β̄, λ̄j)

> ρ̄L∇ζL(β̄)T (ᾱ− β̄) + ρ̄U∇ζU(β̄)T (ᾱ− β̄) +
∑
j∈J

ξ̄j∇αΨj(β̄, λ̄j)
T (ᾱ− β̄).
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The above inequality along with (23), implies

ρ̄LζL(ᾱ) + ρ̄UζU(ᾱ) > ρ̄LζL(β̄) + ρ̄UζU(β̄) +
∑
j∈J

ξ̄jΨj(β̄, λ̄j).

This is contrary to (34). Therefore, the proof of the theorem stands verified.

5. Conclusion

In the present study, sufficient optimality conditions have been generated for a semi-
infinite interval-valued optimization problem with uncertain inequality constraints, by
using the concept of convexity. An illustration is presented to establish the legitimacy
of the sufficient optimality theorem that has been proved. In addition, the duality
theorems for a Wolfe type dual problem are discussed. An example is demonstrated
for the validity of weak duality theorem. It would be a good pilot study to general-
ize the results of this present paper to linear/non-linear semi-infinite interval-valued
multi-objective optimization problem. This may be taken up as an upcoming research
work for the authors.
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[8] Ş.İ.Birbil, J.B.G.Frenk, J.A.Gromicho and S.Zhang, The role of robust optimization in single-leg
airline revenue management, Management Sci. 55 (1) (2009), 148–163.

[9] A.K.Bhurjee and G.Panda, Efficient solution of interval optimization problem, Math. Methods
Oper. Res. 76 (3) (2012), 273–288.

[10] J.F.Bonnans and A.Shapiro, Perturbation Analysis of Optimization Problems, New York and
Springer, (2013).

[11] C.Caramanis, S.Mannor and H.Xu, 14 Robust optimization in machine learning, In: S.Sra,
S.Nowozin and S.J.Wright (editors). Optimization for Machine Learning, MIT Press, (2012),
369–402.

[12] A.Charnes, W.W.Cooper and K.Kortanek, A duality theory for convex programs with convex
constraints, Bull. Amer. Math. Soc. 68 (6) (1962), 605–608.

[13] S.L.Chen, The KKT optimality conditions for optimization problem with interval-valued objec-
tive function on Hadamard manifolds, Optimization. 71 (3) (2022), 613-632.



488 R. R. Jaichander, I. Ahmad, and K. Kummari

[14] B.A.Dar, A.Jayswal and D.Singh, Optimality, duality and saddle point analysis for interval-
valued non-differentiable multi-objective fractional programming problems, Optimization. 70 (5-
6) (2021), 1275-1305.

[15] V.Gabrel, C.Murat and A.Thiele, Recent advances in robust optimization: An overview, Euro-
pean J. Oper. Res. 235 (3) (2014), 471–483.
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