• 제목/요약/키워드: Optimal replacement time

Search Result 170, Processing Time 0.02 seconds

Optimal Periodic Replacement Policy Under Discrete Time Frame (이산 시간을 고려한 시스템의 교체와 수리 비용 최적화 연구)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • Systems such as database and socal network systems have been broadly used, and their unexpected failure, with great losses and sometimes a social confusion, has received attention in recent years. Therefore, it is an important issue to find optimal maintenance plans for such kind of systems from the points of system reliability and maintaining cost. However, it is difficult to maintain a system during its working cycle, since stopping works might incur users some troubles. From the above viewpoint, this paper discusses minimal repair maintenance policy with periodic replacement, while considering the random working cycles. The random working cycle and periodic replacement policies with minimal repair has been discussed in traditional literatures by usually analyzing cases for the nonstopping works. However, maintenance can be more conveniently done at discrete time and even during the working cycle in real applications. So, we propose that periodic replacement is planned at discrete times while considering the random working cycle, and moreover provide a model in which system, with a minimal repair at failures between replacements, is replaced at the minimum of discrete times KT and random cycles Y. The average cost rate model is used to determine the optimal number of periodic replacement.

Determination of Optimal Time to Replace On-S Water Pipeline by Analyzing Water Main Failures and Economical Efficiency (수도사고 분석 및 경제성 평가를 통한 상수관로 최적 교체시기 결정)

  • Kim, Jong-Sin;Jung, Kwan-Sue;Bae, Chul-Ho;Lee, Doo-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • In this study, applied to the industrial water service, it is verified feasibility of break-even analysis method which has not been introduced in Korea. The On-san water pipeline of 7.1km among the Ul-san industrial water service is selected and the optimal replacement time calculated by break-even analysis method is year 2033 to 2044 which will be 53 to 67 years since the pipes were buried. If indirect cost such as the value of lost water and traffic disruption, service interruption, etc. is calculated as 30 and 100% of the direct cost, the financially optimum replacement time is advanced 3 to 9 years. These ways present rational criteria to establish long-term plan for budget and to execute the limited budget efficiently.

A Study on a Preventive Replacement Model by the Dynamic Programming Method (동적 계획법에 의한 예방교체모형에 관한 연구)

  • 조재립;황의철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.75-80
    • /
    • 1987
  • This paper is deals with the preventive replacement for the equipment which fails only when the total amount of damage reaches a prespecified failure level. Most of replacement model use time as their decision variable, but it is not appropriate for the cases in which failures dependent on their cumulative damage levels. In this paper, a new type preventive replacement model is introduced in which an equipment is replaced before failure when the cumulative damage reaches a certain level or replaced on failure, whichever occures first. The optimal replacement damage levels which minimize total expected cost are obtained by the Dynamic programming Method when the number of use of the equipment is finite. A numerical example is also presented. The optimal preventive replacement policy when the equipment will be used for a finite time span is also discussed.

  • PDF

Optimal Replacement Policy under Capital Budgeting Constraints (자본제약하(資本制約下)의 최적대체정책(最適代替政策))

  • Lee, Sang-Beom;Cha, Dong-Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 1977
  • We consider the problem of determining the optimal replacement policy of the items which deteriorate appreciably with time and become obsolete. Most of the conventional engineering economy models including the widely-accepted MAPI model assume linearity of technological improvement over time, in obtaining the economic lives of items and the net present values of the replacement alternatives under consideration. The main achievement of this paper is in that it successfully relaxes this strict linearity assumption to accommodate various other types of technological improvements in determining those values. Based on these results, we also include in this paper the mathematical models by which to determine the optimal replacement policies of items both under and without capital budgeting constraints.

  • PDF

A Study on Evaluation of Optimal Replacement Period by Reliability Prediction for the Door Control Relay of EMU (전동차 출입문제어 계전기의 신뢰도예측을 통한 적정 교체주기 연구)

  • Han, Jaehyun;Kim, JongWoon;Koo, JeongSeo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.34-40
    • /
    • 2014
  • In this paper, we want to know the optimal replacement cycle(time) for this study was performed. The optimal preventive replacement age can be fond by finding the value of time that minimizes the cost function(model of Barlow and Jardine). In addition, The reliability of the relay according to the service environment were studied. The use of the exchange relay period is longer, and maintenance cost rate(per hour) may increase, and also the reliability may cause a decline. In addition, considering the preventive maintenance and purchase order, a representative relay(RAX-L440-A type) life was calculated.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Determination of Optimal Replacement Period for A Multicomponent System Consider with Failure Types (고장형태(故障形態)를 고려(考慮)한 다부품장비(多部品裝備)의 최적교환시기(最適交換時期) 결정(決定))

  • Lee, Seung-Jun;Gang, Chang-Uk;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, it is assumed that a system is composed of an essential unit and a nonessential unit. During the running of the system, an essential unit is replaced at periodic replacement time T or at nth failure of essential unit whichever occurs first. Nonessential unit is replaced at its failure and at the replacement of essential unit. This paper derive optimal replacement period which minmises the total expected cost for replacement. The unimodality of totoal maintenance cost function is proved under the assumption that hazard rate of each component is continuous and monotone increasing failure rate(IFR). Based on this condition, it is shown that the optimal replacement period is finite and unique.

  • PDF

On Optimal Replacement Policy for a Generalized Model (일반화된 모델에 대한 최적 교체정책에 관한 연구)

  • Ji Hwan Cha
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

Dynamic Programming Model for Optimal Replacement Policy with Multiple Challengers (다수의 도전장비 존재시 설비의 경제적 수명과 최적 대체결정을 위한 동적 계획모형)

  • Kim, Tae-Hyun;Kim, Sheung-Kown
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.466-475
    • /
    • 1999
  • A backward Dynamic Programming(DP) model for the optimal facility replacement decision problem during a finite planning horizon is presented. Multiple alternative challengers to a current defender are considered. All facilities are assumed to have finite service lives. The objective of the DP model is to maximize the profit over a finite planning horizon. As for the cost elements, purchasing cost, maintenance costs and repair costs as well as salvage value are considered. The time to failure is assumed to follow a weibull distribution and the maximum likelihood estimation of Weibull parameters is used to evaluate the expected cost of repair. To evaluate the revenue, the rate of operation during a specified period is employed. The cash flow component of each challenger can vary independently according to the time of occurrence and the item can be extended easily. The effects of inflation and the time value of money are considered. The algorithm is illustrated with a numerical example. A MATLAB implementation of the model is used to identify the optimal sequence and timing of the replacement.

  • PDF

Optimum Replacement Intervals Considering Salvage Values In Random Time Horizon (확률 시평에서 잔존가치를 고려한 최적의 교체 주기)

  • Park, Chung-Hyeon;Lee, Dong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.170-176
    • /
    • 2001
  • An optimization problem to obtain the optimal replacement interval considering the salvage values is studied. The system is minimally repaired at failure and is replaced by new one at age T(periodic replacement policy with minimal repair of Barlow and Hunter〔2〕). Our model assumes that the time horizon associated with the number of replacements is random The total expected cost considering the salvage values with random time horizon is obtained and the optimal replacement interval minimizing the cost is found by numerical methods. Comparisons between non-considered salvage values and this case are made by a numerical example.

  • PDF