• Title/Summary/Keyword: Optimal allocation scheme

Search Result 189, Processing Time 0.029 seconds

Joint optimization of beamforming and power allocation for DAJ-based untrusted relay networks

  • Yao, Rugui;Lu, Yanan;Mekkawy, Tamer;Xu, Fei;Zuo, Xiaoya
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.714-725
    • /
    • 2018
  • Destination-assisted jamming (DAJ) is usually used to protect confidential information against untrusted relays and eavesdroppers in wireless networks. In this paper, a DAJ-based untrusted relay network with multiple antennas installed is presented. To increase the secrecy, a joint optimization of beamforming and power allocation at the source and destination is studied. A matched-filter precoder is introduced to maximize the cooperative jamming signal by directing cooperative jamming signals toward untrusted relays. Then, based on generalized singular-value decomposition (GSVD), a novel transmitted precoder for confidential signals is devised to align the signal into the subspace corresponding to the confidential transmission channel. To decouple the precoder design and optimal power allocation, an iterative algorithm is proposed to jointly optimize the above parameters. Numerical results validate the effectiveness of the proposed scheme. Compared with other schemes, the proposed scheme shows significant improvement in terms of security performance.

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

A Fast Converged Solution for Power Allocation of OFDMA System

  • Hwang, Sungho;Cho, Ho-Shin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.721-725
    • /
    • 2014
  • In this paper, we propose a fast adaptive power allocation method for an orthogonal frequency division multiple access (OFDMA) system that employs an adaptive modulation and coding (AMC) scheme. The proposed scheme aims to reduce the calculation complexity of greedy adaptive power allocation (APA), which is known as the optimal algorithm for maximizing the utility argument of power. Unlike greedy APA, which starts power allocation from "0", the proposed algorithm initially allocates a certain level of power determined by the water-filling scheme. We theoretically demonstrate that the proposed algorithm has almost the same capability of maximizing the utility argument as the greedy APA while reducing the number of operations by 2M, where M is the number of AMC levels.

Joint Subcarrier and Bit Allocation for Secondary User with Primary Users' Cooperation

  • Xu, Xiaorong;Yao, Yu-Dong;Hu, Sanqing;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3037-3054
    • /
    • 2013
  • Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users' cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU's spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

A Joint Resource Allocation and Routing Scheme for the IEEE 802.16j Multi-hop Relay Networks (IEEE 802.16j 멀티홉 릴레이 네트워크를 위한 통합 자원 할당-라우팅 기법)

  • Lee, Kyung-Joo;Lee, Hyuk-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Routing (or path selection) is one of the key issues of multi-hop relay networks such as the IEEE 802.16j. Moreover, the allocation of appropriate resource such as bandwidth should not only be made in accordance with the paths selected, but the utilization of radio resource of an entire cell should also be maximized. Due to this interdependency between the problems of resource allocation and routing, it is desired these two problems are addressed simultaneously. In this paper, we propose a joint resource allocation and routing scheme for an OFDMA-based multi-hop cellular system. This scheme uses a polynomial time heuristic algorithm called Multi-Dimensional Multi-choice Knapsack Problem (MMKP) in order to find an approximate solution maximizing the total downlink throughput. In the simulation results, we show that the proposed scheme finds a sub-optimal solution which is superior to a link quality-based routing scheme, but slightly worse than the optimal solution.

  • PDF

Energy Efficient Resource Allocation with Energy Harvesting in Cognitive Radio Networks (인지 라디오 네트워크에서 에너지 하베스팅을 고려한 에너지 효율적 자원 할당 방안)

  • Lee, Kisong;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1255-1261
    • /
    • 2016
  • Recently, the energy harvesting technology in which energy is collected from the wireless signal which is transmitted by mobile communication devices, has been considered as a novel way to improve the life time of wireless sensors by mitigating the lack of power supply problem. In this paper, we consider the optimal sensing time and power allocation problem for cognitive radio systems, where the energy efficiency of secondary user is maximized while the constraint are satisfied, using the optimization technique. Based on the derived optimal solutions, we also have proposed an iterative resource allocation algorithm in which the optimal power and sensing time allocation can be found without excessive computations. The simulation results confirm that the proposed scheme achieves the optimal performance and it outperforms the conventional resource allocation schemes in terms of energy efficiency while the constraints are guaranteed to be satisfied.

Two-Level Power and Rate Allocation Scheme on the Forward Link for Multicell CDMA Data Users (멀티셀 CDMA 데이터 사용자를 위한 순방향 링크에서의 2계층 전송출력/전송률 할당체계)

  • Chang, Kun-Nyeong;Lee, Ki-Dong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • In this paper, an optimal power and rate allocation model is mathematically formulated on the forward link of multicell CDMA mobile systems. The model maximizes total utility considering data rates and fairness among cells under delay and PRER (Post RPL Error Rate) constraints. The two-level power and rate allocation scheme is suggested to solve the proposed model. Experimental results show that the proposed scheme provides a good solution in a fast time.

Optimal Power and Spectrum Allocation Scheme in Multicell WRAN (Multicell WRAN에서의 최적 전력 및 주파수 할당 기법)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Cho, Hae-Keun;Song, Myoung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.666-675
    • /
    • 2008
  • The IEEE 802.22 standard is being developed with the target of improving the efficiency of spectrum utilization and importing the new wireless communication service. The WRAN standard based on Cognitive Radio is being processed for sharing TV bands. In this paper, the efficient spectrum allocation scheme and the optimal power allocation scheme, Partial Constant Power Water Filling (PCPWF), are proposed to maximize the channel capacity and spectrum efficiency and minimize the interference between adjacent cells. And we maximize the system throughput and fairness by using proposed dynamic cell plan that efficiently allocates channel. The results of the simulations are presented to verify the utilization of our proposed scheme.