• Title/Summary/Keyword: Optical components

Search Result 1,018, Processing Time 0.04 seconds

2.3mm Height Actuator for Small Form factor Optical Drive (초소형드라이브를 위한 2.3mm 액추에어터)

  • Cheong, Young-Min;Lee, Jin-Won;Kim, Kwang;Kang, Jong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.61-64
    • /
    • 2004
  • Recently, as the requirements of several mobile products come to the front, to cope with the market needs, various mobile storage applications have appeared. Therefore, the core components and technologies for mobile optical disc drives have been developed continuously. In case of the optical storage, the small sized optical pickup is necessary to realize the mobile optical disc drive, because the optical pickup height is determined by the optical parts and an actuator. In this paper, we propose the optical pickup actuator using the horizontally arranged magnetic circuit, and apply to 5mm height Small Form-factor Optical Drive.

  • PDF

Design and Analysis of Multi Beam Space Optical Mixer

  • Lian Guan;Zheng Yang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • In response to the current situation where general methods cannot effectively compensate for the phase delay of ordinary optical mixers, a multi-layer spatial beam-splitting optical mixer is designed using total reflection triangular prisms and polarization beam splittings. The phase delay is generated by the wave plate, and the mixer can use the existing parallel plates in the structure to individually compensate for the phase of the four output beams. A mixer model is established based on the structure, and the influence of the position and orientation of the optical components on the phase delay is analyzed. The feasibility of the phase compensation method is simulated and analyzed. The results show that the mixer can effectively compensate for the four outputs of the optical mixer over a wide range. The mixer has a compact structure, good performance, and significant advantages in phase error control, production, and tuning, making it suitable for free-space coherent optical communication systems.

Design and Implementation of Optical Signal Processor in Fiber-Optic Current Transducer for Electric Equipments (전력기기용 고안정성 광섬유 CT 센서의 광 신호처리기 설계 및 구현)

  • Jang, Nam-Young;Choi, Pyung-Suk;Eun, Jae-Jeong;Cheong, Hyeon-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, we have designed and implemented an optical signal processor in order to use in a fiber-optic current CT for electric equipments where its properties were discussed. The fabricated optical signal processor is used to reduce a measurement current error that induced by the effects of intensity variation in the optical output signal due to losses coming from optical components or polarization variation in a PFOCS. Also, the optical signal processor was fabricated in compact/lightweight with unification of opto-electronic transducer part, analog signal process part, and real-time measurement part consisted of a level shift and ${\mu}-processor$. The experiment of optical signal processor has been performed in the range of $0{\sim}7,500A$ using the PFOCS made all fiber-optic components. As a result of experiment, the linearity error of measurement current is less than 1.7% and its average error is less than 0.3% in the range of $1,000A{\sim}7,000A$.

  • PDF

Femtosecond Laser Application to Optical Memory and Microfluidics

  • Sohn Ik-Bu;Lee Man-Seop;Woo Jeong-Sik;Lee Sang-Man;Chung Jeong-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.92-94
    • /
    • 2005
  • We present a novel method for three-dimensional optical memory and microchannel embedded in fused silica glass. Three-dimensional dot patterning with a femtosecond laser pulse and observation with optical microscope are performed. Dot patterns are created by use of a 0.42 N.A. objective to focus 100 fs laser pulses inside the material. We demonstrate data storage with $2{\mu}m$ dot pitch and $7{\mu}m$layer spacing $(36 Gbit/cm^3)$. A three-dimensional microchannel acting as microfluidic and microoptical components is directly fabricated inside a silica glass. The optical micrographs of the microchannel are obtained by a digital camera of a microscope.

Design for Low Cost Optical Node with Wavelength Reconfiguration

  • Lee, Jong-Hyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.63-68
    • /
    • 2022
  • Two wavelength reconfigurable optical nodes are designed. One for 20km or shorter link length, and the other for up to 60km link length. While the first one requires no dispersion compensation, the latter needs dispersion compensation fiber included in the node, which requires additional optical amplifier to compensate the insertion loss of DCF. We calculate all the optical path losses in both cases using the typical value of optical components in the market to see the feasibility of the designed optical node. The minimum received power in the node is calculated to be -21.5dBm without DCF and -12.5dBm with DCF, respectively. These received powers are above the receiver sensitivity both for OC-48 and OC-192 according to the previous work.

Phase Bias Independent Fade-free Optical Fiber Interferometric Vibration Sensor

  • Youngwoong Kim;Jongyeol Kim;Younggwan Hwang;Gukbeen Ryu;Young Ho Kim;Myoung Jin Kim
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.456-462
    • /
    • 2024
  • We propose a novel fade-free optical fiber interferometric vibration sensor using a simple setup with a 90° optical hybrid. The interferometer consists of all-optical components without the phase modulators and complex demodulation processes that were previously used to compensate for signal fading induced by phase bias change. Fade-free output was successfully obtained by in-phase and quadrature detection with a π/2 phase shifting scheme. Theoretical analysis and measurement results showed that the proposed interferometric vibration sensor operates independently of the phase bias state of interfering waves.

Cost Effective Silica-Based 100 G DP-QPSK Coherent Receiver

  • Lee, Seo-Young;Han, Young-Tak;Kim, Jong-Hoi;Joung, Hyun-Do;Choe, Joong-Seon;Youn, Chun-Ju;Ko, Young-Ho;Kwon, Yong-Hwan
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.981-987
    • /
    • 2016
  • We present a cost-effective dual polarization quadrature phase-shift coherent receiver module using a silica planar lightwave circuit (PLC) hybrid assembly. Two polarization beam splitters and two $90^{\circ}$ optical hybrids are monolithically integrated in one silica PLC chip with an index contrast of $2%-{\Delta}$. Two four-channel spot-size converter integrated waveguide-photodetector (PD) arrays are bonded on PD carriers for transverse-electric/transverse-magnetic polarization, and butt-coupled to a polished facet of the PLC using a simple chip-to-chip bonding method. Instead of a ceramic sub-mount, a low-cost printed circuit board is applied in the module. A stepped CuW block is used to dissipate the heat generated from trans-impedance amplifiers and to vertically align RF transmission lines. The fabricated coherent receiver shows a 3-dB bandwidth of 26 GHz and a common mode rejection ratio of 16 dB at 22 GHz for a local oscillator optical input. A bit error rate of $8.3{\times}10^{-11}$ is achieved at a 112-Gbps back-to-back transmission with off-line digital signal processing.

Dynamic Characteristics Prediction of Rubber Mounts for Anti-Vibration of an Optical Disk Drive (광디스크 드라이브 방진마운트의 동특성 예측)

  • Kim, Guk-Won;Kim, Nam-Ung;Im, Jong-Rak;An, Tae-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.104-109
    • /
    • 2001
  • With the increase of storage density and data transfer rates in optical disk drive, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. However, there are still a lot of difficulties in the use of designing the rubber components with complex shape and under pre-deformed state. It was demonstrated in that the variation of rubber component stiffness with the pre-deformed state were calculated by the finite element method and the reliability of numerical results were checked by compared with the measuring the deflection values. This paper presents a efficient design method of rubber mounts for anti-vibration of an optical disk thrive. With an empirical equation to estimate elastic modulus from hardness, and dynamic characteristics of rubber material of a cylindrical shape, this method is capable of predicting the dynamic characteristics of rubber components at design stage.

  • PDF

Plastic Substrate for Flexible TFT LCD

  • Hwang, Hee-Nam;Choi, Jae-Moon;Yeom, Eun-Hee;Park, Yong-Ho;Kim, Lee-Ju;You, Ho-Young;Lee, Ki-Ho;Kim, In-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1406-1408
    • /
    • 2006
  • Plastic substrate for flexible TFT LCD is developed. The gas barrier, optical properties and conductivity in the substrate is improved through depositing silicon oxide/nitride layer and ITO layer, coating polymer layer on plastic film by sputtering process and wet coating process. The whole production process of the plastic substrate is guaranteed the productivity by using roll to roll process.

  • PDF

A Study on Optical Losses for Tubular LED Lamp's Components (직관형 LED램프의 구성부품별 광손실에 관한 연구)

  • Jeong, Hee-Suk;Park, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.1-8
    • /
    • 2011
  • The high efficiency tubular LED lamp has been developed. But, it occurs optical losses in consists of LED package, module, diffuser etc.. By Measuring the tubular LED lamp's luminous flux, we compared and analyzed about the effect of optical losses for each component and actually using measured luminous intensity distribution data, illuminance distribution was simulated by Relux. Optical losses are 24[%] from LED package to luminaire and the tubular LED lamp can be replaced with fluorescent lamp. In this paper, we could provide data for optimum lighting design by analyzing the optical characteristics for developing and propagating the tubular LED lamp.