• Title/Summary/Keyword: Optical Transmitter

Search Result 213, Processing Time 0.026 seconds

A Study on Performance of Optical Duobinary Transmitters for 25Gbps Transmission (25Gbps 광 신호 전송을 위한 광 듀오바이너리 송신기 특성에 관한 연구)

  • Lee, Dong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • This paper presents a theoretical study of transmission performance for optical duobinary transmitters employed a Mach-Zehnder modulator. Especially, we have investigated the performance of the various transmitters for transmitting 25Gbps optical duobinary signals at a wavelength of 1550nm without any dispersion compensation methods over single mode fiber. Due to the characteristics of generating their duobinary signals, each transmitter has a distinct optical power spectrum and an eye opening shape. By these, there was a difference in the dispersion tolerance. We could find a suitable transmitter for 25Gbps transmission considering the structure complexities and the restricted conditions with the simulation results.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

A study on underwater optical wireless communication link capability in the Bay of Bengal

  • Sathyaram, V.;Prince, Shanthi;Vedachalam, N.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • The paper presents a numerical underwater channel model developed in MATLAB for estimating the optical link budget between a light emitting diode (LED) based optical transmitter and a photo diode (PD) receiver when operated in the harbor, coastal and deep waters locations in the Bay of Bengal. The water samples are collected at different locations in the Bay of Bengal using a water sampler during an offshore research cruise. The optical attenuation, the main inherent parameter determining the range of the optical communication link is identified for the different waters using an underwater irradiance measurement system in the laboratory. The identified parameters are applied to the numerical model and found that a 10 W LED and a photo diode based system can provide the optical budget required for a horizontal underwater communication range of about 0.5, 14 and 35 m in the harbor, coastal and deep waters locations respectively. By increasing the transmitter power to 50 W, the operating range of the communication link could be increased up to 53 m in deep water locations in the Bay of Bengal.

PSPICE Modeling and Characterization of Optical Transmitter with 1550 nm InGaAsP LDs (1550 nm InGaAsP LD 광송신회로의 PSPICE 모델 및 광변조 특성 해석)

  • Goo, Yu-Rim;Kim, Jong-Dae;Yi, Jong-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • The PSPICE equivalent circuit elements of a 1550 nm InGaAsP laser diode were derived by using multi-level rate equations. The device parameters were extracted by using a self-consistent numerical method for the optical gain properties of the MQW active regions. The resulting equivalent circuit model is also applied to an actual optical transmitter, and its PSPICE simulation results show good agreement with the measured results once the parasitic capacitance due to the packaging is taken into account.

Configuration of ETDM 20 Gb/s optical transmitter / receiver and their characteristics (전기적 시분할 다중 방식을 이용한 20 Gb/s 광송,수신기의 제작 및 성능 평가)

  • Lim, Sang-Kyu;Cho, Hyun-Woo;Lyu, Gap-Youl;Lee, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • We developed an optical transmitter and receiver for an electrical time division multiplexed (ETDM) 20 Gb/s optical transmission system, and experimentally investigated their characteristics. Especially, the clock extraction circuit, which is a key component in realizing broadband optical transmission receivers, was realized by using an NRZ-to-PRZ converter implemented with a half-period delay line and an EX-OR, a high-Q bandpass filter using a cylindrical dielectric resonator, and a microstrip coupled-line bandpass filter. Finally, the bit-error-rate of demultiplexed 10 Gb/s electrical signal after back to-back transmission was measured, and a high receiver sensitivity [-26.2 dBm for NRZ ($2^{7}-1$) pseudorandom binary sequence (PRBS)] was obtained

A Study on Short-Range Wireless Communication System Development Using LED Based on Power Line Communication (전력선통신기반 LED를 이용한 단거리 무선통신 시스템 개발에 관한 연구)

  • Yun, Ji-Hun;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • This study is to develop power line communication and short-range wireless communication system using LED. I will create optical receiver and transmitter using LED and optical sensor and connectors for display device and communication in receiver and transmitter were created. Experiment method is to signal and waveform through oscilloscope date from optical sensor after chosen a highly efficient LED. In addition, reception and transmitter of smoothly data using visible light communication program were checked. I will compliment problems through this experiment and constantly study, improve on power loss.

  • PDF

SPICE Simulation of All-Optical Transmitter/Receiver Circuits Configured with MQW Optical Modulators and FETs (다층 양자우물구조 광 변조기와 전계효과 트랜지스터를 사용한 광 송/수신기회로의 SPICE 모사)

  • 이유종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.420-424
    • /
    • 1999
  • In this paper, an optical switching circuit and several types of all-optical transmitter/receiver circuits which are configured with photodiodes, multiple quantum-well(MQW) optical modulators, and field-effect transistors(FETs) were simulated using PSPICE and their results of these are examined and discussed. 20 $\mu\textrm{m}$ ${\times}$ 20 $\mu\textrm{m}$ of window size was used for the optical modulators and 100 $\mu\textrm{m}$ wide FETs with the transconductance value of 55 mS/mm were used for the simulations. Simulation results clearly show that in order for the high speed operation of the all-optical circuits, the size of each device should be minimized to reduce the parasitic capacitance, the circuits should be designed to operate at the wavelength where the resposivity of photodiodes becomes the maximum peak, and the use of short, high-intensity input optical signal beams is very advantageous.

  • PDF

Wavelength Selectable 8 Channel WDM Transmitter (파장선택형 8채널 WDM 광원)

  • Kim, Jeha;Chung, Yong-Duck;Ryu, Sang-Wan;Sim, Jae-Sik;Kim, Sung-Bock
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.96-97
    • /
    • 2003
  • We developed a wavelength selectable 8-channel WDM otpical transmitter. The module consisted of two 4-channel DFB-LD arrays monolithically integrated with a 1x4 Power combiner and an SOA. It operated at 1550 nm and 200 GHz spacing.

  • PDF

Laser Diode Output Stabilization by Optical feedback (Optical Feedback 방식에 의한 Laser Diode의 출력 안정화)

  • Jeong, Ui-Jin;Lee, Seong-Eun;Gang, Min-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.72-77
    • /
    • 1980
  • We analyze several problems concerning the operation of the optical feedback prebias control scheme in the loser diode optical transmitter and present a LD simulation circuit as a way of adjusting the component's optimum value without using the Laser - triode. 1.5% light power decrease was observed between the temperature range of $0^{\circ}C$ and 36$^{\circ}C$ in which the total light power of LD was used for feedback loop and fairly good operation was demonstrated when a star coupler was employed as a beamsplitter by which approximately 1% portion of the light power was feedbacked.

  • PDF