• Title/Summary/Keyword: Optical Temperature Sensor

Search Result 373, Processing Time 0.025 seconds

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Isothermal Compression Molding for a Polymer Optical Lens (등온압축성형공법을 이용한 폴리머 렌즈 성형)

  • Oh, Byung-Do;Kwon, Hyun-Sung;Kim, Sun-Ok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

A Fiber Temperature Sensor using Prism & Thermochromic Planar Waveguide Materials (프리즘과 열변색성 물질의 평면도파로로 구성된 광섬유형 온도 센서)

  • 조강민;서규원;윤종국;이동록;강신원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.196-197
    • /
    • 2003
  • 광섬유형 센서는 전자기적 간섭에 강하고 높은 감도와 원거리 측정 등의 장점뿐만 아니라 낮은 삽입 손실, 높은 기계적인 신뢰성, 원거리 측정과 같은 장점을 가지고 있어 광통신 기술뿐 아니라 기초과학및 응용 과학분야의 계측에 활발히 이용되고 있다. 온도센서의 경우 센서의 재료가 온도에 견디는 정도에 따라 측정범위가 좌우되므로 광섬유형 센서의 경우 넓은 온도범위에서 측정이 가능하며 다양한 구조의 센서구현이 용이하다. (중략)

  • PDF

Aqua-Aware: Underwater Optical Wirelesss Communication enabled Compact Sensor Node, Temperature and Pressure Monitoring for Small Moblie Platforms

  • Maaz Salman;Javad Balboli;Ramavath Prasad Naik;Wan-Young Chung;Jong-Jin Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.50-61
    • /
    • 2022
  • This work demonstrates the design and evaluation of Aqua-Aware, a lightweight miniaturized light emitting diode (LED) based underwater compact sensor node which is used to obtain different characteristics of the underwater environment. Two optical sensor nodes have been designed, developed, and evaluated for a short and medium link range called as Aqua-Aware short range (AASR) and Aqua-Aware medium range (AAMR), respectively. The hardware and software implementation of proposed sensor node, algorithms, and trade-offs have been discussed in this paper. The underwater environment is emulated by introducing different turbulence effects such as air bubbles, waves and turbidity in a 4-m water tank. In clear water, the Aqua-Aware achieved a data rate of 0.2 Mbps at communication link up to 2-m. The Aqua-Aware was able to achieve 0.2 Mbps in a turbid water of 64 NTU in the presence of moderate water waves and air bubbles within the communication link range of 1.7-m. We have evaluated the luminous intensity, packet success rate and bit error rate performance of the proposed system obtained by varying the various medium characteristics.

Fiber optic temperature sensor using evanescent field coupling of the thermo-optic polymer planar waveguide (열광학 폴리머 평면도파로의 소산장결합을 이용한 광섬유형 온도센서)

  • Kim, Si-Hong;Jung, Woong-Gyu;Kim, Kwang-Tack;Song, Jae-Won;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • Optical fiber temperature sensor, using resonance wavelength shifting of single mode fiber-to-planar waveguide coupler by heat, was fabricated. Thermo-optic polymers, have large change of refractive index due to heat, were used for planar waveguide. The device fabrication procedure including fiber polishing steps was illustrated and the device structure with independent polarization was demonstrated experimentally. The resonance wavelength difference of fabricated device was less than 2nm. The resonance wavelength shifting owing to temperature variation, from room temperature($24^{\circ}C$) to $90^{\circ}C$, was showed $-0.54nm/^{\circ}C$, $-3nm/^{\circ}C$.

  • PDF

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

An Experimental Study for the Minimization of Soot Adsorption on the Optical Surface of an Engine Soot Detector (I) (엔진 수트 측정 센서 표면에서의 흡착 오염 저감을 위한 실험적 연구 (I))

  • Yoon Eui-Sung;Kim Hak-Yal;Kong Hosung;Han Hung-Gu
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.343-349
    • /
    • 2004
  • The adsorption of soot particles onto a sensor surface of the engine soot detector posses a critical problem in the measurement. In order to prevent the optical rod surface from soot contamination, various functional coatings and flow-induced cleaning were applied to the surface in this work. For surface coatings, various materials of self-assembled monolayers (SAM) such as OTS (octadecyltrichlorosilane), PFDTES (perfluorodecyl-triethoxysilane) and PFDTMS (perfluorodecyltrimethoxysilane) were coated on the optical rod surface ,which have different characteristics in both hydrophobicity and oleophobicity. These coatings were tested with soot content varying from $0\%\;to\;3wt\%$ and oil temperature from 20 to $70^{\circ}C$. Test results showed that surface coatings were not effective for preventing the adsorption of soot panicles on the surface of optical rod. It was thought that these coatings provided the surface with additional attractive surface forces. However, it was found that adsorption of soot particles onto a sensor surface was minimized by flow-induced cleaning. This effect was tested with varying the flow velocity.

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.

Fiber Sensor Network for Vessel Monitoring based on Code Division Multiple Access (코드분할 다중방식을 기반으로 하는 선박 상태 모니터링 광섬유 센서 네트워크)

  • Kim, Young-Bok;Lee, Seong-Ro;Jeon, Sie-Wook;Park, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1216-1221
    • /
    • 2011
  • We propose a multiplexed fiber Bragg grating (FBG) sensor network for vessel monitoring to measure the variation of strain and temperature by environmental perturbation based on code division multiple access (CDMA). The center wavelength of FBG was linearly changed by environmental perturbation such as strain and temperature variation so that we could be monitoring the state of sensors. A RSOA was used as optical broadband source and which was modulated by using pseudo random binary sequence (PRBS) signal. The correlation peak of reflected signal from sensor networks was measured. In this paper, we used the sliding correlation techniques for high speed response and dynamic rage of sensors.