• Title/Summary/Keyword: Opimization

Search Result 13, Processing Time 0.022 seconds

ON SUFFICIENT OPTIMALITY THEOREMS FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS

  • Kim, Moon-Hee;Lee, Gue-Myung
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.667-677
    • /
    • 2001
  • We consider a nonsmooth multiobjective opimization problem(PE) involving locally Lipschitz functions and define gen-eralized invexity for locally Lipschitz functions. Using Fritz John type optimality conditions, we establish Fritz John type sufficient optimality theorems for (PE) under generalized invexity.

  • PDF

Opimization of HDD Suspension Shape Using Sensitivity Analysis and Sequential Linear Programing (감도해석 및 순차적 선형계획법을 이용한 HDD 서스펜션의 형상 최적화)

  • Hwang, C.H.;Kim, D.W.;Lee, J.S.;Park, Y.P.;Park, N.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.128-133
    • /
    • 2002
  • The main obstacle to high track density in HDD is the structural resonances of the suspension. The most critical mode is sway mode and second torsion mode, when a data is read and written. It is common fact that the effect of two modes is smaller when a thickness is bulky. But the stiffness of suspension is smaller, the slider can follow a disk better. Because these two fact are reciprocal, a compromise is needed. So we investigated another method to improve band width without changing of the thickness of suspension but with changing of the shape. In this paper, we use two method - Sensitivity analysis and SIP using ADS. And we obtained the optimized value close to target value.

  • PDF

Stiffiness Analysis and Optimization of Strand and Wire Rope (스트랜드와 와이어 로프의 강성해석 및 최적화)

  • Heo, Seong-Pil;Yang, Won-Ho;Seong, Gi-Deuk;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1246-1253
    • /
    • 2000
  • Wire ropes are widely used in cable car, suspension bridge and elevator, etc. and there has been a growing need for ropes of large diameter. The theoretical procedures to obtain the stiffness coefficients of wire ropes, using previously reported theory, are programmed and the verification of the program is made. The effects of lay angle on the stiffness of strand are researched and comparisons on stiffness of rope are made according to the lay type. Axial stiffness optimization problems with coupling and torsional stiffness constraints are formulated and the effects of constraints on other stiffness coefficients on axial stiffness optimization are investigated.

The Measurement and Prediction of Minimum Flash Point Behaviour for Flammable Binarry Solution Using Pensky-Martens Closed Cup Tester

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.6-10
    • /
    • 2010
  • The flash point of liquid solution is one of the most important flammability properties that used in hazard and risk assessments. Minimum flash point behaviour (MFPB) is showed when the flash point of a liquid mixture is below the flash points of the individual components. In this paper, the lower flash points for the flammable binary system, n-decane+n-octanol, were measured by Pensky-Martens closed cup tester. This binary mixture exhibited MFPB. The measured flash points were compared with the values calculated by the Raoult's law and the optimization method using van Laar and UNIQUAC equations. The optimization method were found to be better than those based on the Raoult's law, and successfully estimated MFPB. The opimization method based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC.

A study on the Optimum Modification Method by Multi-level Opimization (다단계 최적변경법에 관한 연구)

  • 박성현;박선주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1266-1272
    • /
    • 2001
  • This paper discusses the multi-level optimization method in dynamic optimization problems, through stiffened plate of ship structures. In structural optimization, the computational cost increases rapidly as the number of design variables increases. And we need a great amount of calculation and time on problems of modified dynamic characteristics of large and complicated structures. In this paper, the multi-level optimization is proposed, which decreases computational time and cost. The dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

Adaptive Opimization of MIMO Codebook to Channel Conditions for Split Linear Array (분할된 선형배열안테나를 위한 채널 환경에 적응하는 MIMO 코드북 최적화)

  • Mun, Cheol;Jung, Chang-Kyoo;Kwak, Yun-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.736-741
    • /
    • 2009
  • In this paper, adaptive optimizations of precoder codebook to channel conditions is proposed for a multiuser multiple-input multiple-output (MIMO) system with split linear array and limited feedback. We propose adaptive method for constructing a precoder codebook by coloring the random vector quantization codebook at each link by using limited long-term feedback information on transmit correlation matrix of each link. It is shown that the proposed multiuser MIMO codebook design scheme outperforms existing multiuser MIMO codebook design schemes for various channel conditions in terms of the average sum throughput of multiuser MIMO systems using zero-forcing maximum eigenmode transmission and limited feedback.

  • PDF

A Study on the Opimization of Process and Operation Condition for Membrane System in Tap Water Treatment (분리막을 이용한 정수처리 System에서 처리공정 및 운전조건의 최적화에 관한연구)

  • 오중교
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.193-201
    • /
    • 1999
  • The object of study were the development of membrane process and the optimization of operation condition for membrane system, which was used the pre-treatment system of tap water treatment in steady of conventional process such as coagulation, sedimentation. The higher steady flux is very important factor, by a suitable pre-treatment and optimization of operating condition such as fouling control, crossflow and backwashing method, in membrane system. So, we were observed the effect of flux decline for membrane used by 4 type ultrafiltration(UF) membrane pre-treatment process, and optimized the operation condition of filtration system under various MWCO(Molecular weight cut-off), operation pressure, linear velocity and temperature to maintain higher flux. From these experiment, we were identified that UF process showed a slower flux decline rate and a higher flux recovery than microfiltration(MF) membrane. The water quality of UF permeate was better than that of MF, and was not effected pre-treatment process. In the operation condition, the rate of flux decline was diminished by a higher linear velocity and operation temperature, lower pressure.

  • PDF

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.