• Title/Summary/Keyword: Operation Characteristics

Search Result 7,718, Processing Time 0.035 seconds

The analysis of tissue elasticity using computer-controlled ultrasonography in the affected upper limb of patients after breast cancer surgery

  • Chan-Hyuk Kwon;Min Woo Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.167-173
    • /
    • 2024
  • In this paper, we propse a quantitative research by investigating the subcutaneous tissue elasticity by using ultrasonography in lymphedema patients after breast cancer surgery. Lymphedema patients who took breast cancer operation were included. Thickness of subcutaneous tissue was assessed at two spots; 10cm below elbow (forearm) and 10cm above elbow (upper arm), not only in affected side but also in sound side. By using probe attached to real-time pressure sensor, stress-strain curves were obtained. We defined tissue elasticity as slope of that curve at range of 7.5~15% of strain to avoid toe region. By comparing the elasticity of normal side and that of affected side, lymphedema tissues were classified into 'softer' and 'harder' tissues. Overall 30 cases of lymphedema tissues and 30 cases of sound tissues were checked. The difference of the elasticity between normal and affected side ranged from -3.98 N/m2 to 1.40 N/m2. The lymphedema tissues were classified into 17 softer tissues and 13 harder tissues. No demographic and clinical values, including clinical stage of lymphedema, showed statistically meaningful differences between two groups. Evaluation of subcutaneous tissue elasticity with ultrasonography and real-time pressure sensor could be one of the useful tools for investigation of lymphedema tissue characteristics.

Analyses of the Basic Inquiry Process in Korean 3-10 Grade Science Textbooks: Focused on Observation and Measurement (우리나라 3-10학년 과학 교과서에 나타난 기초탐구과정 분석: 관찰 및 측정 탐구요소를 중심으로)

  • Park, Bo-Hwa;Kim, Hee-Kyong;Lee, Bong-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.421-431
    • /
    • 2007
  • The purpose of this study was to examine the characteristics of observation and measurement inquiry process in the Korean science textbooks. For the inquiry process of observation, the higher grade textbooks contained more 'comparative observation' rather than 'simple observation'. Students should express their observation results in written words rather than verbal descriptions in the higher grade. For the inquiry process of measurement, the temperature measurement was the most frequent measurement activity. 'Measurement design' was found more frequently in the lower grade textbooks. The uses of measurement tools were not presented systematically and were presented restrictively when the relevant experiment wanted to use these tools. The higher grade textbooks include 'quantitative measurements' rather than 'qualitative measurements' and 'operation measurement' rather than 'simple measurement'. In the application of measurement results, we had difficulty in finding the activities related with the usage of unit, unit conversion, significant figure, error and uncertainty.

Studying Life Zone Determination and Classification of South Korea for Providing and Operating Living SOC Facilities in the Post-COVID-19 Era (코로나-19 이후 시대에 생활SOC 시설의 설치·운영을 위한 우리나라 생활권의 설정과 유형 구분 연구)

  • Heejae Kim;Geunyoung Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.448-461
    • /
    • 2024
  • Purpose: The purpose of this study is to establish a life zone class suitable for Korean characteristics in the post-COVID-19 era and to classify the types for the installation and operation of living SOC facilities. Method: The concept of the life zone was established through policies and previous studies related to the life zone, and data in various fields such as population, employment, transportation, economy, and education were classified using the z-score technique. Result: Korea's life zones can be classified into metropolitan life zones, regional life zones, urban life zones, village life zones, and neighborhood life zones, and depending on their roles, they can be classified into central life zones, workplace-residential balanced life zones, residential life zones, industrial life zones, and low-density life zones. Conclusion: The results of this study show that proper life zone establishment and proper living SOC supply can prevent the decline of underdeveloped areas and contribute to balanced regional development

Montgomery Multiplier with Very Regular Behavior

  • Yoo-Jin Baek
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.17-28
    • /
    • 2024
  • As listed as one of the most important requirements for Post-Quantum Cryptography standardization process by National Institute of Standards and Technology, the resistance to various side-channel attacks is considered very critical in deploying cryptosystems in practice. In fact, cryptosystems can easily be broken by side-channel attacks, even though they are considered to be secure in the mathematical point of view. The timing attack(TA) and the simple power analysis attack(SPA) are such side-channel attack methods which can reveal sensitive information by analyzing the timing behavior or the power consumption pattern of cryptographic operations. Thus, appropriate measures against such attacks must carefully be considered in the early stage of cryptosystem's implementation process. The Montgomery multiplier is a commonly used and classical gadget in implementing big-number-based cryptosystems including RSA and ECC. And, as recently proposed as an alternative of building blocks for implementing post quantum cryptography such as lattice-based cryptography, the big-number multiplier including the Montgomery multiplier still plays a role in modern cryptography. However, in spite of its effectiveness and wide-adoption, the multiplier is known to be vulnerable to TA and SPA. And this paper proposes a new countermeasure for the Montgomery multiplier against TA and SPA. Briefly speaking, the new measure first represents a multiplication operand without 0 digits, so the resulting multiplication operation behaves in a very regular manner. Also, the new algorithm removes the extra final reduction (which is intrinsic to the modular multiplication) to make the resulting multiplier more timing-independent. Consequently, the resulting multiplier operates in constant time so that it totally removes any TA and SPA vulnerabilities. Since the proposed method can process multi bits at a time, implementers can also trade-off the performance with the resource usage to get desirable implementation characteristics.

A Safety Culture's Effect on Safety Behavior of Airline Flight Crews in Korea (국내 항공사 운항승무원의 안전문화가 안전행동에 미치는 영향)

  • Kim Hyeon Deok;Choi Youn Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.746-754
    • /
    • 2023
  • Aircraft accidents are characterized by a low probability of survival compared to other means of transportation, and the main causes appear to be human factors such as violation of regulations and communication. In order to activate the safety management system to prevent such accidents, an important key variable is to recognize the importance of safety culture and actively engage in safety behavior rather than simply emphasizing compliance with regulations to flight crew members. Even if there are well-established regulations, safety culture, The effectiveness varies depending on the safety atmosphere and level of safety behavior. In this study, the correlation between safety culture and safety behavior was verified through a survey of domestic flight crew members' awareness of safety culture. The results showed that fair culture and self-reporting were not activated enough to have a significant impact on safety behavior. We aim to improve the performance of the safety management system by confirming the characteristics of safety culture and safety behavior.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Application of analytic hierarchy process technique for selecting a hydrothermal energy site (수열에너지 입지 선정을 위한 계층화분석법의 적용)

  • Joohyun Ahn;Suwan Park;Changhyun Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.69-81
    • /
    • 2024
  • In this study, an evaluation system that can be used to evaluate the feasibility of developing and supplying hydrothermal energy for the operation of large-scale complex facilities was developed. To this end, this study derived factors to be considered when selecting a location for the use of hydrothermal energy using raw water from multi-purpose dams and regional water supply systems through literature survey and expert interviews. The evaluation indicators derived from this study are divided into four sectors: hydrothermal energy utilization factors, location factors, planning factors, and disaster safety factors, and are composed of 10 mid-level indicators and 34 detailed planning indicators. The relative importance of all factors was derived using the Analytic Hierarchy Process (AHP) technique, and the developed evaluation indicators and relative importance were applied to four multi-purpose dam regions in the country. As a result, it was found that in the development and use of hydrothermal energy utilizing regional raw water supply line the urban planning conditions of the supply site can have a greater impact on the location selection results than the hydrothermal energy development itself. Due to the characteristics of the evaluation indicators developed in this study and their nature as comprehensive indicators, it is believed that the results should be applied to determine the overall adequacy of site selection in the early stages of hydrothermal energy development. In the future, it is believed that it will be necessary to analyze the problems in supplying and operating hydrothermal energy using raw water from multi-purpose dams and regional water resources. Based on the analysis the evaluation system developed in this study is expected to be improved and supplemented.

Effect of Ramping Rate on the Durability of Proton Exchange Membrane Water Electrolysis During Dynamic Operation Using Triangular Voltage Cycling

  • Hye Young Jung;Yong Seok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.253-260
    • /
    • 2024
  • Proton exchange membrane water electrolysis (PEMWE) is an efficient method for utilizing renewable energy sources such as wind and solar powers to produce green hydrogen. For PEMWE powered by renewable energy sources, its durability is a crucial factor in its performance since irregular and fluctuating characteristics of renewable energy sources, especially for wind power, can deteriorate the stability of PEMWE. Triangular voltage cycle is well able to simulate fluctuating wind power, but its effect on the durability has not been investigated extensively. In this study, the performance degradation of the PEMWE cell operated with the triangular voltage cycling was investigated at different ramping rates. The measured current responses during the cycling gradually decreased for both ramping rates, and I-V curve measurements before and after the cycling confirmed the degradation of the performances of PEMWE. For both measurements, the degradation rate was larger for 300 mV s-1 than 30 mV s-1, and they were determined as 0.36 and 1.26 mV h-1 (at the current density of 2 A cm-2) at the ramping rates of 30 and 300 mV s-1, respectively. The comparison with other studies on triangular voltage cycling also indicate that an increase in the ramping rate accelerates the deterioration of the PEMWE performance. X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the Ir catalyst was oxidized and did not dissolve during the voltage cycling. This study suggests that the ramping rate of the triangular voltage cycling is an important factor for the evaluation of the durability of PEMWE cells.

Development of class I surge protection device for the protection of offshore wind turbines from direct lightning (해상풍력발전기 직격뢰 보호용 1등급 바리스터 개발)

  • Geon Hui Lee;Jae Hyun Park;Kyung Jin Jung;Sung-Man Kang;Seung-Kyu Choi;Jeong Min Woo
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.50-56
    • /
    • 2023
  • With the abnormal weather phenomena caused by global warming, the frequency and intensity of lightning strikes are increasing, and lightning accidents are becoming one of the biggest causes of failures and accidents in offshore wind turbines. In order to secure generator operation reliability, effective and practical measures are needed to reduce lightning damage. Because offshore wind turbines are tall structures installed at sea, the possibility of direct lightning strikes is very high compared to other structures, and the role of surge protection devices to minimize damage to the electrical and electronic circuits inside the wind turbine is very important. In this study, a varistor, which is a key element for a class 1 surge protection device for direct lightning protection, was developed. The current density was improved by changing the varistor composition, and the distance between the electrode located on the varistor surface and the edge of the varistor was optimized through a simulation program to improve the fabrication process. Considering the combined effects of heat distribution, electric field distribution, and current density on the optimized varistor surface, silver electrodes were formed with a gap of 0.5 mm. The varistor developed in this study was confirmed to have an energy tolerance of 10/350 ㎲, 50kA, which is a representative direct lightning current waveform, and good protection characteristics with a limiting voltage of 2 kV or less.

Delay time Analysis of Asynchronous RIT Mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT모드 MAC의 지연시간 분석)

  • Dongwon Kim;Mi-Hee Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN (Wireless Smart Utility Network) Alliance proposed a Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e Receiver Initiated Transmission(RIT) Mode Media Access Control (MAC) in terms of throughput and latency, and looks at considerations for efficient operation. RIT mode shows that as the check interval becomes longer, delay time and throughput decrease. It was shown that as the traffic load increases, if the RIT check interval is shortened, the delay time can be shortened and throughput can be increased. RIT mode has the advantage of low power consumption and has neutral characteristics between IEEE802.15.4 and CSL mode in terms of delay time and throughput.