• 제목/요약/키워드: Online parameter learning

검색결과 25건 처리시간 0.024초

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

현실 세계의 불완전한 데이타를 위한 베이지안 네트워크 파라메터의 온라인 학습 (Online Learning of Bayesian Network Parameters for Incomplete Data of Real World)

  • 임성수;조성배
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권12호
    • /
    • pp.885-893
    • /
    • 2006
  • 최근 현실 세계의 불확실한 환경을 극복하기 위한 방법 중 하나로 베이지안 네트워크(Bayesian network, BN)가 부각되고 있다. BN의 파라메터 학습은 주어진 평가 척도에 따라 데이타의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, BN 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 기존의 오프라인 학습은 학습에 필요한 충분한 양의 데이타를 모으기에는 많은 노력과 시간이 필요하다. 또한 현실세계는 불완전성을 포함하고 있어 완전한 데이타를 얻기 힘들다. 본 논문에서는 불완전한 데이타로부터 온라인으로 BN 파라메터를 학습하는 방법을 제안한다. 이 방법은 불완전한 데이타로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 실시간 학습을 통해 변화하는 환경에 대한 적응성을 높인다. Cohen 등이 제안한 온라인 파라메터 학습방법인 Voting EM 알고리즘과 비교 실험한 결과, 완전한 데이타를 가지고 학습한 경우에는 동일한 학습 결과를, 그리고 불완전한 데이타의 경우에는 보다 나은 학습 결과를 얻었다.

Generative AI parameter tuning for online self-directed learning

  • Jin-Young Jun;Youn-A Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.31-38
    • /
    • 2024
  • 본 연구는 온라인 원격교육에서 코딩 교육 활성화를 위해, 생성형 AI 기반의 학습 지원 도구개발에 필요한 하이퍼 파라미터 설정을 제안한다. 연구를 위해 세 가지 다른 학습 맥락에 따라 하이퍼 파라미터를 설정할 수 있는 실험 도구를 구현하고, 실험 도구를 통해 생성형 AI의 응답 품질을 평가하였다. 생성형 AI 자체의 기본 하이퍼 파라미터 설정을 유지한 실험은 대조군으로, 연구에서 설정한 하이퍼 파라미터를 사용한 실험은 실험군으로 하였다. 실험 결과, 첫 번째 학습맥락인 "학습 지원"에서는 실험군과 대조군 사이의 유의한 차이가 관찰되지 않았으나, 두 번째와 세 번째 학습 맥락인 "코드생성"과 "주석생성"에서는 실험군의 평가점수 평균이 대조군보다 각각 11.6% 포인트, 23% 포인트 높은 것으로 나타났다. 또한, system content에 응답이 학습 동기에 미칠 수 있는 영향을 제시하면 학습 정서를 고려한 응답이 생성되는 것이 관찰되었다.

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

무선 센서 네트워크에 기반한 온라인 베이지안 학습 (On-line Bayesian Learning based on Wireless Sensor Network)

  • 이호석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (D)
    • /
    • pp.105-108
    • /
    • 2007
  • Bayesian 학습 네트워크는 여러 가지의 다양한 응용 분야에 적용된다. 본 논문은 다양한 무선 센서 네트워크 환경에 적용될 수 있는 온라인 Bayesian 학습 네트워크의 추론 알고리즘 구조에 대하여 논의한다. 첫째, 논문은 Bayesian 파라메타 학습과 Bayesian DAG 구조 학습을 논의하고, 다음에 무선 센서 네트워크의 특징과 무선 환경에서의 데이터 수집에 대하여 논의한다. 둘째, 논문은 온라인 Bayesian 학습 네트워크에서의 중요한 고려 사항과 네트워크 학습 알고리즘의 개념적 구조에 대하여 논의한다.

  • PDF

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

제약조건을 갖는 최소자승 추정기법과 최급강하 알고리즘을 이용한 동적 베이시안 네트워크의 파라미터 학습기법 (Parameter Learning of Dynamic Bayesian Networks using Constrained Least Square Estimation and Steepest Descent Algorithm)

  • 조현철;이권순;구경완
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.164-171
    • /
    • 2009
  • This paper presents new learning algorithm of dynamic Bayesian networks (DBN) by means of constrained least square (LS) estimation algorithm and gradient descent method. First, we propose constrained LS based parameter estimation for a Markov chain (MC) model given observation data sets. Next, a gradient descent optimization is utilized for online estimation of a hidden Markov model (HMM), which is bi-linearly constructed by adding an observation variable to a MC model. We achieve numerical simulations to prove its reliability and superiority in which a series of non stationary random signal is applied for the DBN models respectively.

개선된 역전파 신경회로망을 이용한 온라인 필기체 숫자의 분류에 관한 연구 (On the Classification of Online Handwritten Digits using the Enhanced Back Propagation of Neural Networks)

  • 홍봉화
    • 정보학연구
    • /
    • 제9권4호
    • /
    • pp.65-74
    • /
    • 2006
  • The back propagation of neural networks has the problems of falling into local minimum and delay of the speed by the iterative learning. An algorithm to solve the problem and improve the speed of the learning was already proposed in[8], which updates the learning parameter related with the connection weight. In this paper, we propose the algorithm generating initial weight to improve the efficiency of the algorithm by offering the difference between the input vector and the target signal to the generating function of initial weight. The algorithm proposed here can classify more than 98.75% of the handwritten digits and this rate shows 30% more effective than the other previous methods.

  • PDF

넓은 해영역에서의 GA를 이용한 PID 제어기 게인 조정에 따른 개체수와 세대수 파라미터의 특징에 관한 연구 (The Study of a Population and Generation Parameter's Characteristics on PID Gain Tuning with GA in Wide Solution Area)

  • 정황훈
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.60-65
    • /
    • 2017
  • A GA is one of the best method to find optimal value in searching area. A GA is driven by probabilistic selection that based on the survival of the fittest. So this algorithm need a huge solving time even if it can be used lots of optimizing problem such as structural design, machine learning, system's identification and so on. This GA's characteristic constrain the program to drive offline. Some studies try to use this algorithm on online or reduce the GA's running time with parallel GA or micro GA. Unfortunately these studies still didn't reduce amount of fitness solving. If the chromosome was imported to the system, it affected system's stability. And when the control system uses online GA, it also doesn't have enough learning time. In this study, try to find stability criterion to reduce the chromosome's affection and find the characteristic of the number of population and generation when GA was driven into the wide searching area.

지능형 IIR 필터 기반 다중 채널 ANC 시스템 (Intelligent IIR Filter based Multiple-Channel ANC Systems)

  • 조현철;여대연;이영진;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1220-1225
    • /
    • 2010
  • This paper proposes a novel active noise control (ANC) approach that uses an IIR filter and neural network techniques to effectively reduce interior noise. We construct a multiple-channel IIR filter module which is a linearly augmented framework with a generic IIR model to generate a primary control signal. A three-layer perceptron neural network is employed for establishing a secondary-path model to represent air channels among noise fields. Since the IIR module and neural network are connected in series, the output of an IIR filter is transferred forward to the neural model to generate a final ANC signal. A gradient descent optimization based learning algorithm is analytically derived for the optimal selection of the ANC parameter vectors. Moreover, re-estimation of partial parameter vectors in the ANC system is proposed for online learning. Lastly, we present the results of a numerical study to test our ANC methodology with realistic interior noise measurement obtained from Korean railway trains.