• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.027 seconds

Research on Brand Value Dimensions of Employers: Based on Online Reviews by the Employees

  • XU, Meng
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.215-225
    • /
    • 2022
  • This study investigates employees' online reviews, conducts in-depth text topic mining, effectively summarizes the dimensions of employer brand value, and seeks effective ways to build employer brands from a multi-dimensional perspective. This study employs samples of employer reviews, filter keywords according to word frequency-inverse document frequency, builds a review network containing the same keywords, explore the community and summarize the theme dimensions. Simultaneously, it makes a dynamic comparison and analysis of the employer brand value dimension of different industries and enterprises. The study shows that the community exploration theme can be summarized into 11 dimensions of employer brand value, and the dimensions of employer brand value are significantly different across industries and among different enterprises within the industry. The attention to the employer brand value dimension has a significant time change. Various industries pay increasing attention to the dimension of work intensity and career development, while employers pay steady attention to the dimension of welfare benefits. The findings of this study suggest that seeking the heterogeneity of employer brand resources from the multi-dimensional differences and changes is an effective way to improve the competitiveness of enterprises in the human capital market.

An Investigation on Expanding Co-occurrence Criteria in Association Rule Mining (연관규칙 마이닝에서의 동시성 기준 확장에 대한 연구)

  • Kim, Mi-Sung;Kim, Nam-Gyu;Ahn, Jae-Hyeon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.23-38
    • /
    • 2012
  • There is a large difference between purchasing patterns in an online shopping mall and in an offline market. This difference may be caused mainly by the difference in accessibility of online and offline markets. It means that an interval between the initial purchasing decision and its realization appears to be relatively short in an online shopping mall, because a customer can make an order immediately. Because of the short interval between a purchasing decision and its realization, an online shopping mall transaction usually contains fewer items than that of an offline market. In an offline market, customers usually keep some items in mind and buy them all at once a few days after deciding to buy them, instead of buying each item individually and immediately. On the contrary, more than 70% of online shopping mall transactions contain only one item. This statistic implies that traditional data mining techniques cannot be directly applied to online market analysis, because hardly any association rules can survive with an acceptable level of Support because of too many Null Transactions. Most market basket analyses on online shopping mall transactions, therefore, have been performed by expanding the co-occurrence criteria of traditional association rule mining. While the traditional co-occurrence criteria defines items purchased in one transaction as concurrently purchased items, the expanded co-occurrence criteria regards items purchased by a customer during some predefined period (e.g., a day) as concurrently purchased items. In studies using expanded co-occurrence criteria, however, the criteria has been defined arbitrarily by researchers without any theoretical grounds or agreement. The lack of clear grounds of adopting a certain co-occurrence criteria degrades the reliability of the analytical results. Moreover, it is hard to derive new meaningful findings by combining the outcomes of previous individual studies. In this paper, we attempt to compare expanded co-occurrence criteria and propose a guideline for selecting an appropriate one. First of all, we compare the accuracy of association rules discovered according to various co-occurrence criteria. By doing this experiment we expect that we can provide a guideline for selecting appropriate co-occurrence criteria that corresponds to the purpose of the analysis. Additionally, we will perform similar experiments with several groups of customers that are segmented by each customer's average duration between orders. By this experiment, we attempt to discover the relationship between the optimal co-occurrence criteria and the customer's average duration between orders. Finally, by a series of experiments, we expect that we can provide basic guidelines for developing customized recommendation systems. Our experiments use a real dataset acquired from one of the largest internet shopping malls in Korea. We use 66,278 transactions of 3,847 customers conducted during the last two years. Overall results show that the accuracy of association rules of frequent shoppers (whose average duration between orders is relatively short) is higher than that of causal shoppers. In addition we discover that with frequent shoppers, the accuracy of association rules appears very high when the co-occurrence criteria of the training set corresponds to the validation set (i.e., target set). It implies that the co-occurrence criteria of frequent shoppers should be set according to the application purpose period. For example, an analyzer should use a day as a co-occurrence criterion if he/she wants to offer a coupon valid only for a day to potential customers who will use the coupon. On the contrary, an analyzer should use a month as a co-occurrence criterion if he/she wants to publish a coupon book that can be used for a month. In the case of causal shoppers, the accuracy of association rules appears to not be affected by the period of the application purposes. The accuracy of the causal shoppers' association rules becomes higher when the longer co-occurrence criterion has been adopted. It implies that an analyzer has to set the co-occurrence criterion for as long as possible, regardless of the application purpose period.

Causal model analysis between quantity and quality for deriving ranking model of Online reviews (온라인리뷰의 랭킹모델링을 위한 양과 질의 인과모형 분석)

  • Lee, Changyong;Kim, Keunhyung
    • The Journal of Information Systems
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Purpose The purpose of this study is to analyze causal relationship between quantity and quality for deriving ranking model of Online reviews. Thus, we propose implications for deriving the ranking model for retrieving Online reviews more effectively. Design/methodology/approach We collected Online review from Tripadvisor web sites which might be a kind of world-famous tourism web sites. We transformed the natural text reviews to quantified data which consists of quantified positive opinions, quantified negative opinions, quantified modification opinions, reviews lengths and grade scores by using opinion mining technologies in R package. We executed corelation and regression analysis about the data. Findings According to the empirical analysis result, this study confirmed that the review length influenced positive opinion, negative opinion and modification opinion. We also confirmed that negative opinion and modification opinion influenced the grade score.

Enhancing Association Rule Mining with a Profit Based Approach

  • Li Ming-Lai;Kim Heung-Num;Jung Jason J.;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.973-975
    • /
    • 2005
  • With the continuous growth of e-commerce there is a huge amount of products information available online. Shop managers expect to apply information techniques to increase profit and perfect service. Hence many e-commerce systems use association rule mining to further refine their management. However previous association rule algorithms have two limitations. Firstly, they only use the number to weight item's essentiality and ignore essentiality of item profit. Secondly, they did not consider the relationship between number and profit of item when they do mining. We address a novel algorithm, profit-based association rule algorithm that uses profit-based technique to generate 1-itemsets and the multiple minimum supports mining technique to generate N-items large itemsets.

  • PDF

Intelligent Marketing and Merchandising Techniques for an Internet Shopping Mall (인터넷 쇼핑몰에서의 지능화된 마케팅과 상품화 계획 기법)

  • Ha, Sung-Ho;Park, Sang-Chan
    • Asia pacific journal of information systems
    • /
    • v.12 no.3
    • /
    • pp.71-88
    • /
    • 2002
  • In this paper, intelligent marketing and merchandising methods utilizing data mining and Web mining techniques are proposed for online retailers to survive and succeed in gaining competitive advantage in a highly competitive environment. The first part of this paper explains the procedures of one-to-one marketing based on customer relationship management(CRM) techniques and personalized recommendation lists generation. The second part illustrates Web merchandising methods utilizing data mining techniques, such as association and sequential pattern mining. We expect that our Web marketing and merchandising methods will both provide a currently operating Internet shopping mall with more selling opportunities and give more useful product information to customers.

Text mining analysis of terms and information on product names used in online sales of women's clothing (텍스트마이닝을 활용한 온라인 판매 여성 의류 상품명에 나타난 용어 및 정보분석)

  • Yeo Sun Kang
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.34-52
    • /
    • 2023
  • In this study, text mining was conducted on the product names of skirts, pants, shirts/blouses, and dresses to analyze the characteristics of keywords appearing in online shopping product names. As a result of frequency analysis, the number of keywords that appeared 0.5% or more for each item was around 30, and the number of keywords that appeared 0.1% or more was around 150. The cumulative distribution rate of 150 terms was around 80%. Accordingly, information on 150 key terms was analyzed, from which item, clothing composition, and material information were the found to be the most important types of information (ranking in the top five of all items). In addition, fit and style information for skirts and pants and length information for skirts and dresses were also considered important information. Keywords representing clothing composition information were: banding, high waist, and split for skirts and pants; and V-neck, tie, long sleeves, and puff for shirts/blouses and dresses. It was possible to identify the current design characteristics preferred by consumers from this information. However, there were also problems with terminology that hindered the connection between sellers and consumers. The most common problems were the use of various terms with the same meaning and irregular use of Korean and English terms. However, as a result of using co-appearance frequency analysis, it can be interpreted that there is little intention for product exposure, so it is recommended to avoid it.

Comparison of Online Shopping Mall BEST 100 using Exploratory Data Analysis (탐색적 자료 분석(EDA) 기법을 활용한 국내 11개 대표 온라인 쇼핑몰 BEST 100 비교)

  • Kang, Jicheon;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Since the beginning of the first online shopping mall, BEST 100 is being provided as the core of all shopping mall websites. BEST 100 is greatly important because consumers can identify popular products at a glance. However, there are only studies using sales outcome indicators, and prior studies using BEST 100 are insignificant. Therefore, this study selected 11 online shopping malls and compared their main characteristics. As a research method, exploratory data analysis technique (EDA) was used by crawling the BEST 100 components of each shopping mall website, such as product name, price, and free shipping check. As a result, the total average price of 11 shopping malls was 72,891.41 won. Sales texts were classified into 8 categories by text mining. The most common category was the fashion part, but it is significant that the setting of the category analyzed the marketing text, not the product attribute. This study has implications for understanding the current online market flow and suggesting future directions by using EDA.

Sentiment analysis of online food product review using ensemble technique (앙상블 기법을 활용한 온라인 음식 상품 리뷰 감성 분석)

  • Kim, Han-Min;Park, Kyungbo
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2019
  • In the online marketplace, consumers are exposed to various products and freely express opinions. As consumer product reviews have a important effect on the success of online markets and other consumers, online market needs to accurately analyze the consumers' emotions about their products. Text mining, which is one of the data analysis techniques, can analyze the consumer's reviews on the products and efficiently manage the products. Previous studies have analyzed specific domains and less than 20,000 data, despite the different accuracy of the analysis results depending on the data domain and size. Further, there are few studies on additional factors that can improve the accuracy of analysis. This study analyzed 72,530 review data of food product domain that was not mainly covered in previous studies by using ensemble technique. We also examined the influence of summary review on improving accuracy of analysis. As a result of the study, this study found that Boosting ensemble technique has the highest accuracy of analysis. In addition, the summary review contributed to improving accuracy of the analysis.

Learning process mining techniques based on open education platforms (개방형 e-Learning 플랫폼 기반 학습 프로세스 마이닝 기술)

  • Kim, Hyun-ah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.375-380
    • /
    • 2019
  • In this paper, we study learning process mining and analytic technology based on open education platform. A study on mining through personal learning history log data based on an open education platform such as MOOC which is growing in interest recently. This technology is to design and implement a learning process mining framework for discovering and analyzing meaningful learning processes and knowledge from learning history log data. Learning process mining framework technology is a technique for expressing, extracting, analyzing and visualizing the learning process to provide learners with improved learning processes and educational services.

The Effects of Cultural Factors in Tourists' Restaurant Satisfaction: Using Text Mining and Online Reviews (문화적 요인이 관광객의 음식점 만족도에 미치는 영향: 텍스트 마이닝과 온라인 리뷰를 활용하여)

  • Jiajia Meng;Gee-Woo Bock;Han-Min Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.145-164
    • /
    • 2023
  • The proliferation of online reviews on dining experiences has significantly affected consumers' choices of restaurants, especially overseas. Food quality, service, ambiance, and price have been identified as specific attributes for the choice of a restaurant in prior studies. In addition to these four representative attributes, cultural factors, which may also significantly impact the choice of a restaurant for tourists, in particular, have not received much attention in previous studies. This study employs the text mining technique to analyze over 10,000 online reviews of 76 Korean restaurants posted by Chinese tourists on dianping.com to explore the influence of cultural factors on the consumer's choice of restaurants in the overseas travel context. The findings reveal that "Hallyu (Korean Wave)" influences Chinese tourists' dining experiences in Korea and their satisfaction. Moreover, Korean food-related words, such as cold noodle, bibimbap, rice cake, pig trotters, and kimchi stew, appeared across all the review topics. Our findings contribute to the existing tourism and hospitality literature by identifying the critical role of cultural factors on consumers', especially tourists', satisfaction with the choice of a restaurant using text mining. The findings also provide practical guidance to restaurant owners in Korea to attract more Chinese tourists.