The Journal of Asian Finance, Economics and Business
/
v.9
no.10
/
pp.215-225
/
2022
This study investigates employees' online reviews, conducts in-depth text topic mining, effectively summarizes the dimensions of employer brand value, and seeks effective ways to build employer brands from a multi-dimensional perspective. This study employs samples of employer reviews, filter keywords according to word frequency-inverse document frequency, builds a review network containing the same keywords, explore the community and summarize the theme dimensions. Simultaneously, it makes a dynamic comparison and analysis of the employer brand value dimension of different industries and enterprises. The study shows that the community exploration theme can be summarized into 11 dimensions of employer brand value, and the dimensions of employer brand value are significantly different across industries and among different enterprises within the industry. The attention to the employer brand value dimension has a significant time change. Various industries pay increasing attention to the dimension of work intensity and career development, while employers pay steady attention to the dimension of welfare benefits. The findings of this study suggest that seeking the heterogeneity of employer brand resources from the multi-dimensional differences and changes is an effective way to improve the competitiveness of enterprises in the human capital market.
There is a large difference between purchasing patterns in an online shopping mall and in an offline market. This difference may be caused mainly by the difference in accessibility of online and offline markets. It means that an interval between the initial purchasing decision and its realization appears to be relatively short in an online shopping mall, because a customer can make an order immediately. Because of the short interval between a purchasing decision and its realization, an online shopping mall transaction usually contains fewer items than that of an offline market. In an offline market, customers usually keep some items in mind and buy them all at once a few days after deciding to buy them, instead of buying each item individually and immediately. On the contrary, more than 70% of online shopping mall transactions contain only one item. This statistic implies that traditional data mining techniques cannot be directly applied to online market analysis, because hardly any association rules can survive with an acceptable level of Support because of too many Null Transactions. Most market basket analyses on online shopping mall transactions, therefore, have been performed by expanding the co-occurrence criteria of traditional association rule mining. While the traditional co-occurrence criteria defines items purchased in one transaction as concurrently purchased items, the expanded co-occurrence criteria regards items purchased by a customer during some predefined period (e.g., a day) as concurrently purchased items. In studies using expanded co-occurrence criteria, however, the criteria has been defined arbitrarily by researchers without any theoretical grounds or agreement. The lack of clear grounds of adopting a certain co-occurrence criteria degrades the reliability of the analytical results. Moreover, it is hard to derive new meaningful findings by combining the outcomes of previous individual studies. In this paper, we attempt to compare expanded co-occurrence criteria and propose a guideline for selecting an appropriate one. First of all, we compare the accuracy of association rules discovered according to various co-occurrence criteria. By doing this experiment we expect that we can provide a guideline for selecting appropriate co-occurrence criteria that corresponds to the purpose of the analysis. Additionally, we will perform similar experiments with several groups of customers that are segmented by each customer's average duration between orders. By this experiment, we attempt to discover the relationship between the optimal co-occurrence criteria and the customer's average duration between orders. Finally, by a series of experiments, we expect that we can provide basic guidelines for developing customized recommendation systems. Our experiments use a real dataset acquired from one of the largest internet shopping malls in Korea. We use 66,278 transactions of 3,847 customers conducted during the last two years. Overall results show that the accuracy of association rules of frequent shoppers (whose average duration between orders is relatively short) is higher than that of causal shoppers. In addition we discover that with frequent shoppers, the accuracy of association rules appears very high when the co-occurrence criteria of the training set corresponds to the validation set (i.e., target set). It implies that the co-occurrence criteria of frequent shoppers should be set according to the application purpose period. For example, an analyzer should use a day as a co-occurrence criterion if he/she wants to offer a coupon valid only for a day to potential customers who will use the coupon. On the contrary, an analyzer should use a month as a co-occurrence criterion if he/she wants to publish a coupon book that can be used for a month. In the case of causal shoppers, the accuracy of association rules appears to not be affected by the period of the application purposes. The accuracy of the causal shoppers' association rules becomes higher when the longer co-occurrence criterion has been adopted. It implies that an analyzer has to set the co-occurrence criterion for as long as possible, regardless of the application purpose period.
Purpose The purpose of this study is to analyze causal relationship between quantity and quality for deriving ranking model of Online reviews. Thus, we propose implications for deriving the ranking model for retrieving Online reviews more effectively. Design/methodology/approach We collected Online review from Tripadvisor web sites which might be a kind of world-famous tourism web sites. We transformed the natural text reviews to quantified data which consists of quantified positive opinions, quantified negative opinions, quantified modification opinions, reviews lengths and grade scores by using opinion mining technologies in R package. We executed corelation and regression analysis about the data. Findings According to the empirical analysis result, this study confirmed that the review length influenced positive opinion, negative opinion and modification opinion. We also confirmed that negative opinion and modification opinion influenced the grade score.
Li Ming-Lai;Kim Heung-Num;Jung Jason J.;Jo Geun-Sik
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.973-975
/
2005
With the continuous growth of e-commerce there is a huge amount of products information available online. Shop managers expect to apply information techniques to increase profit and perfect service. Hence many e-commerce systems use association rule mining to further refine their management. However previous association rule algorithms have two limitations. Firstly, they only use the number to weight item's essentiality and ignore essentiality of item profit. Secondly, they did not consider the relationship between number and profit of item when they do mining. We address a novel algorithm, profit-based association rule algorithm that uses profit-based technique to generate 1-itemsets and the multiple minimum supports mining technique to generate N-items large itemsets.
In this paper, intelligent marketing and merchandising methods utilizing data mining and Web mining techniques are proposed for online retailers to survive and succeed in gaining competitive advantage in a highly competitive environment. The first part of this paper explains the procedures of one-to-one marketing based on customer relationship management(CRM) techniques and personalized recommendation lists generation. The second part illustrates Web merchandising methods utilizing data mining techniques, such as association and sequential pattern mining. We expect that our Web marketing and merchandising methods will both provide a currently operating Internet shopping mall with more selling opportunities and give more useful product information to customers.
In this study, text mining was conducted on the product names of skirts, pants, shirts/blouses, and dresses to analyze the characteristics of keywords appearing in online shopping product names. As a result of frequency analysis, the number of keywords that appeared 0.5% or more for each item was around 30, and the number of keywords that appeared 0.1% or more was around 150. The cumulative distribution rate of 150 terms was around 80%. Accordingly, information on 150 key terms was analyzed, from which item, clothing composition, and material information were the found to be the most important types of information (ranking in the top five of all items). In addition, fit and style information for skirts and pants and length information for skirts and dresses were also considered important information. Keywords representing clothing composition information were: banding, high waist, and split for skirts and pants; and V-neck, tie, long sleeves, and puff for shirts/blouses and dresses. It was possible to identify the current design characteristics preferred by consumers from this information. However, there were also problems with terminology that hindered the connection between sellers and consumers. The most common problems were the use of various terms with the same meaning and irregular use of Korean and English terms. However, as a result of using co-appearance frequency analysis, it can be interpreted that there is little intention for product exposure, so it is recommended to avoid it.
Since the beginning of the first online shopping mall, BEST 100 is being provided as the core of all shopping mall websites. BEST 100 is greatly important because consumers can identify popular products at a glance. However, there are only studies using sales outcome indicators, and prior studies using BEST 100 are insignificant. Therefore, this study selected 11 online shopping malls and compared their main characteristics. As a research method, exploratory data analysis technique (EDA) was used by crawling the BEST 100 components of each shopping mall website, such as product name, price, and free shipping check. As a result, the total average price of 11 shopping malls was 72,891.41 won. Sales texts were classified into 8 categories by text mining. The most common category was the fashion part, but it is significant that the setting of the category analyzed the marketing text, not the product attribute. This study has implications for understanding the current online market flow and suggesting future directions by using EDA.
In the online marketplace, consumers are exposed to various products and freely express opinions. As consumer product reviews have a important effect on the success of online markets and other consumers, online market needs to accurately analyze the consumers' emotions about their products. Text mining, which is one of the data analysis techniques, can analyze the consumer's reviews on the products and efficiently manage the products. Previous studies have analyzed specific domains and less than 20,000 data, despite the different accuracy of the analysis results depending on the data domain and size. Further, there are few studies on additional factors that can improve the accuracy of analysis. This study analyzed 72,530 review data of food product domain that was not mainly covered in previous studies by using ensemble technique. We also examined the influence of summary review on improving accuracy of analysis. As a result of the study, this study found that Boosting ensemble technique has the highest accuracy of analysis. In addition, the summary review contributed to improving accuracy of the analysis.
The Journal of the Convergence on Culture Technology
/
v.5
no.2
/
pp.375-380
/
2019
In this paper, we study learning process mining and analytic technology based on open education platform. A study on mining through personal learning history log data based on an open education platform such as MOOC which is growing in interest recently. This technology is to design and implement a learning process mining framework for discovering and analyzing meaningful learning processes and knowledge from learning history log data. Learning process mining framework technology is a technique for expressing, extracting, analyzing and visualizing the learning process to provide learners with improved learning processes and educational services.
The proliferation of online reviews on dining experiences has significantly affected consumers' choices of restaurants, especially overseas. Food quality, service, ambiance, and price have been identified as specific attributes for the choice of a restaurant in prior studies. In addition to these four representative attributes, cultural factors, which may also significantly impact the choice of a restaurant for tourists, in particular, have not received much attention in previous studies. This study employs the text mining technique to analyze over 10,000 online reviews of 76 Korean restaurants posted by Chinese tourists on dianping.com to explore the influence of cultural factors on the consumer's choice of restaurants in the overseas travel context. The findings reveal that "Hallyu (Korean Wave)" influences Chinese tourists' dining experiences in Korea and their satisfaction. Moreover, Korean food-related words, such as cold noodle, bibimbap, rice cake, pig trotters, and kimchi stew, appeared across all the review topics. Our findings contribute to the existing tourism and hospitality literature by identifying the critical role of cultural factors on consumers', especially tourists', satisfaction with the choice of a restaurant using text mining. The findings also provide practical guidance to restaurant owners in Korea to attract more Chinese tourists.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.