• Title/Summary/Keyword: On-The-Fly Testing

Search Result 57, Processing Time 0.028 seconds

A Study on the Reliability Analysis for Smoke Detector using Dust (분진을 이용한 연기감지기 신뢰성 분석에 관한 연구)

  • Hong, Sung Ho;Choi, Moon Soo;Lee, Young Man
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.11-16
    • /
    • 2013
  • This paper presents a study on the analyzing reliability of smoke fire detector using accelerated life test. In general, the smoke fire detector is broken by dust which flow in smoke detection chamber. In order to conduct accelerated life test of smoke fire detector dust is set accelerated factor in this paper. The dust is fly-ash which is test particle 5th regulated by KS A 0090. The dust accelerated level is 60 g, 180 g and 360 g and failure time is measured by smoke sensitivity testing. It is considered to failure of detector if detector don't operate within 30 secconds when subjected to an air stream having a velocity of 20 cm/s~40 cm/s containing smoke with a concentration of 15% of rate of light-response of 1 m. The goodness of fit test and mean life prediction conduct using the failure time. The result show that life distribution fits the weibull distribution for failure time data and the mean lifes calculate 22.5 year in domestic product and 14.7 years in overseas product applied dust stress only.

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

Estimation of Setting Time and Early-age Strength of Concrete Using the Ultrasonic Pulse Velocity (초음파 속도를 이용한 콘크리트의 응결 및 초기 강도 추정)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-Hwan;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.292-303
    • /
    • 2002
  • This paper presents experimental results for early-age properties of concrete such as the setting time and strength, evaluated via the ultrasonic pulse velocity (UPV). Developing and using an automatically-recording monitoring system, the UPV's of mortar and concrete with various water to binder ratios (W/B) were measured during the first 24 hours. In addition, probe penetration and compression tests were conducted to measure the setting time and compressive strength, respectively. It was observed that the UPV's of mortar with high W/B remained constant during the first 6.5 hours and then abruptly began to increase at constant rates. On the other hand, the UPV of mortar with low W/B increased relatively slowly and gradually due to the setting retardation caused by the use of high range water reducing agent (HRWR). It was found that setting of concrete occurs when the UPV reaches a certain value. Moreover, it was concluded that the estimation formulas should incorporate the effects of W/B to more accurately estimate the early-age strength of concrete from the UPV.

A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw (염해 및 동결융해의 복합열화 작용에 의한 부식촉진시험에 관한 연구)

  • Park, Sang-Soon;So, Byung-Tak
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2016
  • In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the $30^{th}$ freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

Optimization of Lace Tube with Gray Theory and Design of Experiment (회색 관계 이론과 실험계획을 이용한 Lance Tube Nozzle 최적화)

  • Jeong, Ilkab;Lee, Dongmyung;Lee, Sangbeom;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1001-1006
    • /
    • 2016
  • As consumption of energy is increasing rapidly, energy saving is emphasized in nowadays. Thermal power plant occupies a large proportion in various type of power plant. Major causes of decreased power generation efficiency on thermal power stations is deposition of fly ash. Soot Blower is a facility to remove the ash which is deposited outside of tube by steam blowing on boiler. Residual stream which caused by lance tube in soot blower cannot be discharged steam effectively in lance tube causes reducing the thickness of lance tube. On the contrary, increasing discharge ratio of steam, lance tube cannot sustain proper pressure to remove ash on tube. This study suggests increasing discharge ratio of steam with proper pressure to remove ash on tube by optimization on shape of lance tube nozzle. To optimize shape of nozzle, discharge ratio and maximum blowing pressure on nozzle is selected as object functions. Diameter of nozzle, distance between nozzles, angle of nozzle and gap between nozzle is selected as design parameters. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of design parameters. And grey relational analysis and analysis of mean (ANOM) is performed to optimize shape of lance tube.

A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water (혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Yoo Jae-Kang;Kim Dong-Seuk;Park Sang-Joon;Won Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

A Study on the Flowability Properties of the High Flowing Self-Compacting Concrete for Members of Bridge Precast (프리캐스트 교량부재용 초유동 자기충전 콘크리트의 유동 특성에 관한 연구)

  • Choi, Yun Wang;Kim, Yong Jic;Kang, Hyun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.155-163
    • /
    • 2008
  • On the construction site with trends of large scale, high rise and specialization, testing construction of high performance concrete, superior to conventional concrete, is continued to increase. For bridge construction, application of full staging method is gradually decreasing due to noise, dust, and prolonged construction period. Recently, precast construction, which is optimized to urban environment and shorter work period, gains popularity significantly. In bridge structure, overcrowding arrangement of bar is used to ensure its safety. For the manufacturing of overcrowding arrangement of bar, High flowing self-compacting concrete, which is superior to conventional concrete in flowability and compacting property, should be implemented. In this study, the application of blast-furnace slag and fly ash to binary and ternary blended system on the High flowing self-compacting concrete for bridge structure with overcrowding arrangement of bar is evaluated by flowability in accordance with the first class regulations of Japan Society of Civil Engineering (JSCE).

Evaluation of Accuracy and Effectiveness of Real-Time Kinematic GPS Surveying Technology Using Carrier Phase Observations (반송파 위상관측을 이용한 실시간 Kinematic GPS 측량기법의 정확도와 효용성 평가)

  • 이진덕;정한상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.301-309
    • /
    • 1999
  • Real-time kinematic (RTK) GPS surveying which allows centimeter level accuracy of three-dimensional coordinates without post-processing has become recognized as a major advance in GPS technology. Employing On-The-Fly initialization technique, the RTK system can escape from cycle slip problems that have affected as a main obstacle factor in traditional kinematic and static approaches. The objective of this research was to evaluate accuracy and effectiveness of the RTK-GPS surveying. First, the continuous RTK observation of a base line was conducted for the purpose of finding out the repeatability of the RTK surveying and the results which were then compared against results from static surveying showed RMS errors of $\pm{3mm}\;and\;\pm{13mm}$ for their respective horizontal and vertical components. On a test network of 30 stations covering the small area, the results of RTK testing were compared against those from not only post-processing kinematic and rapid-static surveyings but conventional surveyings and also the efficiency of RTK were analyzed. In addition, geoid heights which were derived by combination of GPS and spirit leveling about all of the points within the network were compared against those derived by the PNU95 and EGM96 models respectively.

  • PDF

High Temperature Properties of Alumino Silicate Fire Protection Materials Using Fly ash (플라이애쉬 활용 Alumino silicate계 내화마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Nam-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.689-692
    • /
    • 2008
  • HSC(High Strength Concrete) have superior properties well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling of concrete is serious problem in structure safety. Therefore, Solving methods are required to control the explosive spalling. The properties of concrete are affected by changes of temperatures. Compressive strength and elasticity modulus were degraded depending on a rise of temperatures. Also, change in microstructure and dehydration of concrete subjected to high temperatures. This paper is concerned with change in microstructure and dehydration of the alumino silicate fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM, TG-DSC and XRD. From the experimental test results, influence of high temperatures on microstructure of alumino-silicate fire protection material was identified, including chemical dehydration of C-S-H and CH. The chemical dehydration of CH under various temperatures from to 450 to 600$^{\circ}$C has been measured using the TG-DSC. However, developed alumino silicate fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF