• Title/Summary/Keyword: Oil palm trunk

Search Result 10, Processing Time 0.022 seconds

MICROBIAL COLONISATION AND DEGRADATION OF SOME FIBROUS CROP RESIDUES IN THE RUMEN OF GOATS

  • Ho, Y.W.;Abdullah, N.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.519-524
    • /
    • 1996
  • An investigation was carried out to study the microbial colonization and degradation of five crop residues, viz., sago waste, rice straw, oil palm trunk shavings, untreated palm press fibre and palm press fibre teated with 3% ammonium hydroxide in the rumen of goats. Colonisation by rumen bacteria and fungi was already established on all the five crop residues 8 h after incubation. However, the extent of colonization varied among the crop residues. Microbial colonization was poor on palm press fibre (treated and untreated) but more extensive on sago waste, oil palm trunk shavings and rice straw. By 24 h, most of the soft-walled tissues in sago waste, rice straw and oil palm trunk shavings were degraded leaving the thick-walled tissues extensively colonized by bacteria and fungi. Degradation on palm press fibre was still limited. At 48 h, the thick-walled tissues of sago waste, oil palm trunk shavings and rice straw showed various degrees of degradation - from small erosion zones to large digested areas. Bacterial growth was similar to that at 24 h but fungal growth was less. On palm press fibre, microbial colonization was more extensive than at 24 h but degradation of the fibres was still limited. Degradation of all the five crop residues at 72 h was somewhat similar to that at 48 h. Overall, microbial colonization and degradation were the most extensive on sago waste, followed by rice straw and oil palm trunk shavings, and the least on palm press fibre (treated and untreated). Dry matter loss of the five crop residues at the various incubation periods also showed the same order of degradation.

Chlorine Dioxide Bleaching Properties of Sugarcane Bagasse Pulp and Oil Palm Trunk Pulp (사탕수수 부산물 펄프와 오일팜 줄기 펄프의 이산화염소 표백 특성)

  • Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.13-20
    • /
    • 2015
  • Soda-AQ pulp made from sugarcane bagasse (SCB) and oil palm trunk (OPT) were bleached in element chlorine free (ECF) sequence. Bleached SCB and OPT pulp was achieve higher brightness than 85.0% ISO. Viscosity of SCB bleached pulp and OPT bleached pulp were achieved 18-27 cPs and 18-26 cPs. In 7.8% active chlorine dioxide addition, bleached SCB pulp was shown 88.7% ISO brightness and 20.4 cPs viscosity. And bleached OPT pulp was shown 88.5% ISO brightness and 18.8 cPs viscosity with 7.8% active chlorine dioxide addition.

Evaluation of water holding property for applying a cosmetic moisturizer from oil palm trunk CNF (오일 팜 수간 유래 CNF (cellulose nanofibrils)의 화장품 보습제 적용을 위한 보습력 평가)

  • Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.91-98
    • /
    • 2016
  • Cellulose nanofibrils (CNF) was made from oil palm trunk (OPT) with soda-anthraquinone pulping, chlorine dioxide bleaching, carboxymethylation, followed by mechanical grinding. Size of this CNF was 16-40 nm of width confirmed by TEM. To evaluate CNF from OPT as cosmetics raw materials for moisturizing component, water holding properties was compared with hyaluronic acid and collagen. CNF from OPT had better water holding property than collagen or hyaluronic acid whether phenoxyethanol was added as antiseptic or without additive.

Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets

  • Wistara, Nyoman J;Rohmatullah, Moh Arif;Febrianto, Fauzi;Pari, Gustan;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.671-681
    • /
    • 2017
  • Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at $130^{\circ}C$ of pelletizing temperature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, $525.56-855.23kg/m^3$, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemicellulose, cellulose, and lignin.

Cell Wall Structure of Various Tropical Plant Waste Fibers

  • Abdul Khalil, H.P.S.;Siti Alwani, M.;Mohd Omar, A.K.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.

Effect of Phenol Formaldehyde Impregnation on The Physical and Mechanical Properties of Soft-Inner Part of Oil Palm Trunk

  • Hartono, Rudi;Hidayat, Wahyu;Wahyudi, Imam;Febrianto, Fauzi;Dwianto, Wahyu;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.842-851
    • /
    • 2016
  • The objective of this study was to improve physical and mechanical properties of soft-inner part of oil palm trunk (S-OPT) after impregnation with phenol formaldehyde (PF) resin and densification by close system compression (CSC) method. Effect of different methods of PF resin impregnation (i.e., no vacuum-pressure, vacuum, and vacuum-pressure) was evaluated. The results showed that PF resin impregnation and CSC significantly improved the physical and mechanical properties of S-OPT up to: (1) 176% in density; (2) 309% in modulus of rupture (MOR); (3) 287% modulus of elasticity (MOE); and (4) 191% in the compressive strength. Physical and mechanical properties of S-OPT showed their best performances when PF resin impregnated with vacuum-pressure method as shown by higher weight gain, density, MOR, MOE, compressive strength, and lower recovery of set due to better penetration of PF resin into S-OPT. Combining PF resin impregnation and densification by CSC method could be a good method to improve physical and mechanical properties of S-OPT.

Physical-Mechanical Properties of Laminated Board Made from Oil Palm Trunk (Elaeis guineensis Jacq.) Waste with Various Lamina Compositions and Densifications

  • PRABUNINGRUM, Dita Sari;MASSIJAYA, Muh Yusram;HADI, Yusuf Sudo;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.196-205
    • /
    • 2020
  • The purpose of this study was to investigate a method for improving the physical and mechanical properties of laminated board made from oil palm trunk (OPT). The effects of pretreating the lamina with heat-pressure and altering the lamina composition of the laminated board were investigated. The outer third of OPT in cross-section had high-density wood, while the underlying third had low to medium density. The hot press was applied to pretreat the lamina that had low to medium density. The lamina were 1.5 cm in thickness, 5 cm in width, and 65 cm in length. The hot press was applied at 2.94 MPa or 4.41 MPa at 150 ℃ for 60 minutes, and the target thickness of the lamina was 1 cm. The three layers of the laminated board samples were bonded with isocyanate adhesive at a glue spread of 300 g/㎡ and cold pressed at 0.98 MPa for 3 h. The laminated board samples were tested according to Japanese Agricultural Standard (JAS) 234-2003. The results showed that the densification of the inner lamina did not significantly affect the physical-mechanical properties of the laminated board produced. However, the laminated board made with high-density laminas for the outer layers fulfilled the JAS 234-2003 standard for the modulus of elasticity and the modulus of rupture.

Quality Improvement of Oil Palm Trunk Properties by Close System Compression Method

  • Hartono, Rudi;Wahyudi, Imam;Febrianto, Fauzi;Dwianto, Wahyu;Hidayat, Wahyu;Jang, Jae-Hyuk;Lee, Seung-Hwan;Park, Se-Hwi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.172-183
    • /
    • 2016
  • Densification of the inner part of oil palm trunk (OPT) by the close system compression (CSC) method was performed in this study. The effects of the compression temperature and time on the anatomical, physical and mechanical properties of OPT were evaluated. The inner part of OPT with an initial average density of $0.3g/cm^3$ was used as samples. Oven-dried samples were immersed in water and vacuumed until fully saturated and then compressed by CSC at 120, 140, 160 or $180^{\circ}C$ for 10, 20, 30 or 40 min. The anatomical characteristics of transverse and radial sections before and after compression were compared by optical microscopy. The physical and mechanical properties, including the density, recovery of set (RS), modulus of elasticity (MOE), modulus of rupture (MOR), and compression parallel to grain were examined. It was observed that the anatomical characteristic of the inner part of OPT (i.e., vascular bundles, vessels, and parenchyma tissue) became flattened, fractured, and collapsed after compression by CSC. The RS decreased with increasing compression temperature and time. The lower RS indicated high dimensional stability. The physical and mechanical properties (i.e., density, MOR, MOE, and compressive strength) of the inner part of OPT increased with increasing compression temperature and time. Compression by the CSC method at $160^{\circ}C$ for 40 min was the optimum treatment.

Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia (인도네시아 오일 팜 바이오매스 잠재량 평가)

  • Ahn, Byoung-Jun;Han, Gyu-Seoung;Choi, Don-Ha;Cho, Sung-Taig;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.231-243
    • /
    • 2014
  • In this study, the potential of biomass, which is generated from oil palm cultivation and crude palm oil (CPO) production of Indonesia was assessed in the aspect of energy content. The types of oil palm biomass were classified on the basis of the cultivation stage and the CPO production stage. In the cultivation stage, biomass is considered to be produced from its' root, trunk and frond. Other possible biomass resources such as empty fruit bunch (EFB), palm kernel shell (PKS) and fiber were included in the CPO production stage. As results, total biomass from damaged plantation area of Indonesia was estimated to be annually from 3 million to 16 million tons in 2011. From CPO mills, approximately 49 million tons/yr of biomass residues were estimated to be annually occurred. Their total energy content from each biomass source in cultivation stage was analyzed to be from 593,000 to 3,197,000 TOEs in terms of gross calorific value. In the case of CPO mills, around 22.7 million TOEs was estimated to be potential energy producible by biomass based on gross calorific value of dry basis. If moisture content considered, net calorific value was analyzed to be decreased to 16.3 million TOEs. Based on the results, the total energy contents of all oil palm biomass were estimated to be up to 25,919,000 TOE in terms of gross calorific value. CPO : Crude Palm Oil, EFB : Empty Fruit Bunch, FFB: Fresh Fruit Bunch, PKS : Palm Kernel Shell, OPF : Oil Palm Frond, PKOC : Palm Kernel Oil Cake, ISPO : Indonesia Sustainable Palm Oil Commission, TOE : Tone of Oil Equivalent.

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.