DOI QR코드

DOI QR Code

Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia

인도네시아 오일 팜 바이오매스 잠재량 평가

  • Ahn, Byoung-Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Han, Gyu-Seoung (Department of Wood and Paper Science. College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Choi, Don-Ha (Division of Wood Engineering, Department of Forest Products, Korea Forest Research Institute) ;
  • Cho, Sung-Taig (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Soo-Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute)
  • 안병준 (국립산림과학원 임산공학부 화학미생물과) ;
  • 한규성 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 최돈하 (국립산림과학원 임산공학부 재료공학과) ;
  • 조성택 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이수민 (국립산림과학원 임산공학부 화학미생물과)
  • Received : 2014.01.16
  • Accepted : 2014.02.11
  • Published : 2014.05.25

Abstract

In this study, the potential of biomass, which is generated from oil palm cultivation and crude palm oil (CPO) production of Indonesia was assessed in the aspect of energy content. The types of oil palm biomass were classified on the basis of the cultivation stage and the CPO production stage. In the cultivation stage, biomass is considered to be produced from its' root, trunk and frond. Other possible biomass resources such as empty fruit bunch (EFB), palm kernel shell (PKS) and fiber were included in the CPO production stage. As results, total biomass from damaged plantation area of Indonesia was estimated to be annually from 3 million to 16 million tons in 2011. From CPO mills, approximately 49 million tons/yr of biomass residues were estimated to be annually occurred. Their total energy content from each biomass source in cultivation stage was analyzed to be from 593,000 to 3,197,000 TOEs in terms of gross calorific value. In the case of CPO mills, around 22.7 million TOEs was estimated to be potential energy producible by biomass based on gross calorific value of dry basis. If moisture content considered, net calorific value was analyzed to be decreased to 16.3 million TOEs. Based on the results, the total energy contents of all oil palm biomass were estimated to be up to 25,919,000 TOE in terms of gross calorific value. CPO : Crude Palm Oil, EFB : Empty Fruit Bunch, FFB: Fresh Fruit Bunch, PKS : Palm Kernel Shell, OPF : Oil Palm Frond, PKOC : Palm Kernel Oil Cake, ISPO : Indonesia Sustainable Palm Oil Commission, TOE : Tone of Oil Equivalent.

본 연구에서는 인도네시아 오일 팜 재배 및 CPO 생산 공정으로부터 발생되는 바이오매스의 에너지 이용 가능성을 조사하기 위하여 오일 팜 플렌테이션에서 발생하는 바이오매스의 잠재성을 분석하였다. 인도네시아의 오일 팜 재배 면적은 2011년 8.9 백만 ha에 달하고 있으며, 2020년까지 13 백만 ha로 확대될 것으로 예상된다. 본 연구에서는 2011년 면적을 기준으로 하였으며, 바이오매스의 분석은 오일 팜 재배 시에 발생되는 바이오매스와 CPO 생산 공정 중 발생하는 바이오매스 부산물의 양으로 단계를 구분하여 연구를 수행하였다. 그 결과로 2011년 오일 팜 재배 과정에서 발생하는 바이오매스는 줄기, 가지, 뿌리를 포함하여 최소 3 백만 ton에서 최대 16 백만 ton에 이를 것으로 분석되었으며, CPO 제조 공정에서는 건조 중량 기준 49 백만 ton이 발생하는 것으로 분석되었다. 이것을 건조 기준 고위발열량으로 환산을 할 경우, 593 천 TOE에서 3,197 천 TOE의 에너지가 발생하며, CPO 제조 공정 중 발생하는 바이오매스는 건조중량 기준 48,914 천 ton이 발생하는 것으로 추정되며, 바이오매스 부산물의 에너지량은 고위발열량 기준 22,722 천 TOE, 저위발열량 기준으로 16,330 천 TOE가 발생하는 것으로 추정되었다. 따라서, 2011년 인도네시아의 오일 팜 재배와 CPO 생산으로부터 고위 발열량 기준으로 25,919 천 TOE의 오일 팜 바이오매스 부산물이 발생한 것으로 분석되었다.

Keywords

References

  1. Abnisa, F., Daud W.M.A.W., Husin, W.N.W., Sahu, J.N. 2011. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass and Bioenergy 35(5): 1863-1872. https://doi.org/10.1016/j.biombioe.2011.01.033
  2. Aholoukpe, H., et al. 2013. Estimating aboveground biomass of oil palm: Allometric equations for estimating frond biomass. Forest Ecology and Management 292(0): 122-129. https://doi.org/10.1016/j.foreco.2012.11.027
  3. Brockhaus, M., Obidzinski, K., Dermawan, A., Laumonier, Y., Luttrell, C. 2012. An overview of forest and land allocation policies in Indonesia: Is the current framework sufficient to meet the needs of REDD+? Forest Policy and Economics 18(0): 30-37. https://doi.org/10.1016/j.forpol.2011.09.004
  4. Chiew, Y.L., Shimada, S. 2013. Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy 51(0): 109-124. https://doi.org/10.1016/j.biombioe.2013.01.012
  5. Corley, R.H.V. 2009. How much palm oil do we need? Environmental Science & Policy 12(2): 134-139. https://doi.org/10.1016/j.envsci.2008.10.011
  6. De Souza, S.P., Pacca S., de Avila M.T., Borges J.L.B. 2010. Greenhouse gas emissions and energy balance of palm oil biofuel. Renewable Energy 35(11): 2552-2561. https://doi.org/10.1016/j.renene.2010.03.028
  7. Corley, R.H.V., Hardon, J.J., Tan, G.Y. 1971. Analysis of growth of the oil palm (Elaeis guineensis Jacq.) I. Estimation of growth parameters and application in breeding. Euphytica 20(2): 307-315. https://doi.org/10.1007/BF00056093
  8. Dermawan, A., Obidzinski, K., Komarudin, H. 2011. Withering before full bloom?: Bioenergy development in Southeast Asia. Bogor, Indonesia, Center for International Forestry Research (CIFOR).
  9. European Council. 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/ EC and 2003/30/EC.
  10. Hassan, M.N.A., Jaramillo, P., Griffin, W.M. 2011. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security. Energy Policy 39(5): 2615-2625. https://doi.org/10.1016/j.enpol.2011.02.030
  11. Hassan, M.A., Yacob, S., Shirai, Y., Busu, Z. 2008. Reduction of greenhouse gases emission from palm oil industry and clean development mechanism business in Malaysia. Journal of Biotechnology 136, Supplement(0): S14.
  12. ISPO. 2012. Indonesian Palm Oil Numbers in 2012. M. o. A. R. o. Indonesia. Building D. 2nd Floor Jl. Harsono RM No. 3 Ragunan, Jakarta 12550, Indonesia, Directorate General of Processing and Marketing of Agriculture Products: 1-21.
  13. Kaewmai, R., H-Kittikun, A., Musikavong, C. 2012. Greenhouse gas emissions of palm oil mills in Thailand. International Journal of Greenhouse Gas Control 11(0): 141-151. https://doi.org/10.1016/j.ijggc.2012.08.006
  14. KEEI. 2012. Yearbook of Energy Statistics. Korea Energy Economics Institute.
  15. KFRI. 2009. Standard for the quality of wood pellets.
  16. Lee, S.M. et al. 2013. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass and Bioenergy 48(0): 1-9. https://doi.org/10.1016/j.biombioe.2012.10.015
  17. Mundindex. 2012. http://www.mundindex.com
  18. Na, B.-I., Kim, Y.-H., Lim, W.-S., Lee, S.M., Lee, H.-W., Lee, J.-W. 2013. Torrefaction of oil palm mesocarp fiber and their effect on pelletizing. Biomass and Bioenergy 52(0): 159-165. https://doi.org/10.1016/j.biombioe.2013.02.041
  19. Prasertsan, S., Prasertsan, P. 1996. Biomass residues from palm oil mills in Thailand: An overview on quantity and potential usage. Biomass and Bioenergy 11(5): 387-395. https://doi.org/10.1016/S0961-9534(96)00034-7
  20. Pehnelt, G., Vietze, C. 2012. Recalculating GHG emissions saving of palm oil biodiesel. Environ Dev Sustain: 1-51.
  21. Queiroz, A.G., França, L., Ponte, M.X. 2012. The life cycle assessment of biodiesel from palm oil ("dendê") in the Amazon. Biomass and Bioenergy 36(0): 50-59. https://doi.org/10.1016/j.biombioe.2011.10.007
  22. Schmidt, J.H. 2007. Life Cycle Assessment of Rapeseed Oil and Palm Oil. Part 3: Life Cycle Inventory of Rapeseed oil and Palm oil. Ph.D. Thesis. Department of Development and Planning, Aalborg University.
  23. Shinoj, S., Visvanathan, R., Panigrahi, S., Kochubabu, M. 2011. Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products 33(1): 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009
  24. Shuit, S.H., Tan, K.T., Lee, K.T., Kamaruddin, A.H. 2009. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 34(9): 1225-1235. https://doi.org/10.1016/j.energy.2009.05.008
  25. Singh, R.P., Embrandiri, A., Ibrahim, M.H., Esa, N. 2011. Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option. Resources, Conservation and Recycling 55(4): 423-434. https://doi.org/10.1016/j.resconrec.2010.11.005
  26. Slette, J.P., Wiyono, I. 2012. Indonesia Biofuels Annual. Global Agricultural Information Network. Jakarta, Indonesia.
  27. Somporn Pleanjai, S.H.G. 2009. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 86: S209-S214. https://doi.org/10.1016/j.apenergy.2009.05.013
  28. Souza, S.P., De Avila, M.T., Pacca, S. 2012. Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass and Bioenergy 44(0): 70-79. https://doi.org/10.1016/j.biombioe.2012.04.018
  29. Syahrinudin, D.M., Martius, C., Rodgers, C., Van de Giesen, N., editors. 2005. The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. Ecology and development series no. 28.
  30. Sulaiman, F., Abdullah, N., Gerhauser, H., Shariff, A. 2011. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources. Biomass and Bioenergy 35(9): 3775-3786.
  31. Sumathi, S., Chai, S.P., Mohamed, A.R. 2008. Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews 12(9): 2404-2421. https://doi.org/10.1016/j.rser.2007.06.006
  32. Sung, Y.J., Kim, C.-H., Cho, H.-S., Sim, S.-W., Lee, G.-S., Cho, I.-J., Kim, S.-B. 2013. Study of oil palm biomass resources (Part I) - Characteristics of thermal decomposition of oil palm biomass-. Journal of Korea TAPPI 45(1): 13-20. https://doi.org/10.7584/ktappi.2013.45.1.013
  33. Toscano, G., Riva, G., Foppa Pedretti, E., Duca, D. 2013. Effect of the carbon oxidation state of biomass compounds on the relationship between GCV and carbon content. Biomass and Bioenergy 48(0): 231-238. https://doi.org/10.1016/j.biombioe.2012.11.002
  34. Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.B. 2011. Torrefaction of oil palm wastes. Fuel 90(8): 2585-2591. https://doi.org/10.1016/j.fuel.2011.03.021
  35. Yusoff, S. 2006. Renewable energy from palm oil - innovation on effective utilization of waste. Journal of Cleaner Production 14(1): 87-93. https://doi.org/10.1016/j.jclepro.2004.07.005

Cited by

  1. Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments vol.47, pp.1, 2015, https://doi.org/10.7584/ktappi.2015.47.1.075
  2. Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.360
  3. Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.350
  4. Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products vol.44, pp.5, 2016, https://doi.org/10.5658/WOOD.2016.44.5.629