• Title/Summary/Keyword: Ocean waves

Search Result 1,801, Processing Time 0.026 seconds

Experimental studies of impact pressure on a vertical cylinder subjected to depth induced wave breaking

  • Vipin, Chakkurunnipalliyalil;Panneer Selvam, Rajamanickam;Sannasiraj Annamalaisamy, Sannasiraj
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.439-459
    • /
    • 2022
  • This paper describes experimental studies of impact pressure generated by breaking regular waves in shallow water on a vertical cylinder. Experimental work was carried out in a shallow water flume using a 1:30 - scale model of a vertical rigid circular hollow cylinder with a diameter 0.2 m. This represents a monopile for shallow water offshore wind turbines, subjected to depth induced breaking regular waves of frequencies of 0.8 Hz. The experimental setup included a 1 in 10 sloping bed followed by horizontal bed with a constant 0.8 m water depth. To determine the breaking characteristics, plunging breaking waves were generated. Free surface elevations were recorded at different locations between the wave paddle to the cylinder. Wave impact pressures on the cylinder at a number of elevations along its height were measured under breaking regular waves. The depth-induced wave breaking characteristics, impact pressures, and wave run-up during impact for various cylinder locations are presented and discussed.

Time-domain hydroelastic analysis with efficient load estimation for random waves

  • Kang, H.Y.;Kim, M.H.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-281
    • /
    • 2017
  • Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.

A Far Field Solution of the Slowly Varying Drift Force on an Offshore Structure in Bichromatic Waves - Two Dimensional Problems

  • Lee, Sang-Moon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • A far field solution of the slowly varying force on an offshore structure by gravity ocean waves was shown as a function of the reflection and transmission of the body disturbed waves. The solution was obtained from the conservation of the momentum flux, which simply describes various wave forces, while making it unnecessary to compute complicated integration over a control surface. The solution was based on the assumption that the frequency difference of the bichromatic incident waves is small and its second order term is negligible. The final solution is expressed in term of the reflection and transmission waves, i.e. their amplitudes and phase angles. Consequently, it shows that not only the amplitudes but also the phase differences make critical contributions to the slowly varying force. In a limiting case, the slowly varying force solution gives the one of the mean drift force, which is only dependent on the reflection wave amplitude. An approximation is also suggested in a case where only the mean drift force information is available.

Validity of Ocean Wave Spectrum Using Rayleigh Probability Density Function

  • Choi, Young Myung;Yang, Young Jun;Kwon, Sun Hong
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.250-258
    • /
    • 2012
  • The distribution of wave heights is assumed to be a Rayleigh distribution, based on the assumption of a narrow band and Gaussian distribution of wave elevation. The present study was started with doubts about the narrow band assumption. We selected the wave spectra widely used to simulate irregular random waves. The wave spectra used in this study included the Pierson-Moskowitz spectrum, Bretschneider-Mitsuyasu spectrum, and JONSWAP spectrum. The directionality of the waves was considered. The cosine 2-l type directional spreading function and mixed form of the half-cosine 2-s type with Mitsuyasu type directional spreading are considered here to investigate the effects of a directional spreading function on random waves. The simulated wave height distribution is compared with a Rayleigh distribution.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-24
    • /
    • 2015
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

Mode Selection of Leaky Lamb Waves in Steel Plate

  • Lee, Ju-Won;Kim, Jeong-Tae;Cho, Hyun-Man;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • The dispersion and attenuation of Lamb and Leaky Lamb waves propagating in a 1 mm-thick steel plate were investigated. For acquiring a long(or large) range inspection capability, the fundamental symmetric and anti-symmetric wave modes(S0 and A0) over law frequencies were studied. Based on the dispersion curves, as well as pitch-catch and multi-mode simulations, it was shown that the S0 mode over law frequencies is the proper mode to minimize the dispersion and attenuation. In addition, it was shown that the S0 mode couldbe easily distinguished under multi-mode simulation since it has a larger group velocity than the A0 mode.

ANALYSIS OF OCEAN WAVE BY AIRBORNE PI-SAR X-BAND IMAGES

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.240-242
    • /
    • 2008
  • In the present article, we analyze airborne Pi-SAR (Polarimetric-Interferometric SAR) X-band images of ocean waves around the Miyake Island at approximately 180 km south from Tokyo, Japan. Two images of a same scene were produced at approximately 40 min. interval from two directions at right angles. One image shows dominant range travelling waves, but the other image shows a different wave pattern. This difference can be caused by the different image modulations of RCS and velocity bunching. We have estimated the dominant wavelength from the image of range waves, and from the wave phase velocity computed from the dispersion relation (though no wave height data were available), the image intensity is computed by using the velocity bunching model. The comparison of the result with the second image at right angle strongly suggests the evidence of velocity bunching.

  • PDF