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A Far Field Solution of the Slowly Varying Drift Force on an Offshore
Structure in Bichromatic Waves - Two Dimensional Problems
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ABSTRACT: A far field solution of the slowly varying force on an offshore structure by gravity ocean waves was shown as a function of the
reflection and transmission of the body disturbed waves. The solution was obtained from the conservation of the momentum flux, which simply
describes various wave forces, while making it unnecessary to compute complicated integration over a control surface. The solution was based on
the assumption that the frequency difference of the bichromatic incident waves is small and its second order term is negligible. The final
solution is expressed in term of the reflection and transmission waves, ie. their amplitudes and phase angles. Consequently, it shows that not
only the amplitudes but also the phase differences make critical contributions to the slowly varying force. In a limiting case, the slowly varying

force solution gives the one of the mean drift force, which is only dependent on the reflection wave amplitude. An approximation is also
suggested in a case where only the mean drift force information is available.

1. Introduction

The slowly varying drift force is a phenomenon where
ocean structures experience a low frequency force and motion
with a frequency lower than that of the incident waves.
Understanding this phenomenon is of particular importance to
ocean system design and operations. Offshore systems, such a
guide tower, TLP, FPSO, semisubmersible, open ocean
aquaculture, wave power converter, or ocean buoy, are
designed to operate with a flexible mooring or positioning
system to avoid direct, or first order wave frequency loads. A
drawback of such a flexible system, as a bi-product, is the
possible excitation of low frequency resonance by the slowly
varying drift force.

Over the last thirty years, progress has been made in
understanding and predicting this slowly varying force. As a
near field approach, Pinkster (1979) used the bichromatic
wave velocity potential to evaluate the second order force due
to the wave elevation and fluid velocity on the surface of the
offshore structure. Though the near field approach clearly
gives the physical meaning of each force component, it has
convergence problems related to the solution accuracy for the
number of panels, the evaluation of velocity square terms, the

singularities on sharp corners and the line integration for the
wave elevation on the waterline.
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Kim and Yue (1990) showed the importance of the second
order diffraction effect in evaluating the slowly varying force
for an axisymmetric body. Dai et al. (2005) suggested a
middle field solution in which pressure integration was
performed on the fictitious surface of a middle field control
volume. The advantage of the middle field solution is its
superiority in solution convergence, while the near field
solution is confronted with slow convergence or divergence
problems.

The present paper suggests a far field formulation for the
slowly varying force of a two dimensional body in an explicit
form. The conservation of the momentum flux is applied in
the far field fluid domain, and the time varying slowly
varying terms are extracted and summed up to obtain the
final solution. Theoretical computation results for a fixed
finite vertical thin barrier in waves are provided. And a crude
approximation form is also suggested for design purposes.

2. Mathematical Formulation

The conservation of momentum flux is expressed in
term of the linear velocity potential, which describes the
pressure at the far field. Bichromatic incident waves of
different frequencies are then introduced to define the
potential fields. Applying the bichromatic wave potential
to the conservation of the momentum flux, the explicit
formula for the second order slowly varying force is
derived.
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2.1 Momentum flux

Assume that a long cylinder body is floating at the sea
surface and gravity waves progress from the left negative
x-direction to the right positive x-direction perpendicular
to the body, where the origin of the coordinate is located.
The positive y-direction is defined as upward.

Taking the two dimensional control boundary with
verticals at the infinity in the negative and positive
x-directions, the momentum flux (Maruo, 1960) in the
x-direction is written as

dM, © = ©
o :pf u_mdy+f p_oody“pf us,dy (1)
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where u is the x-component velocity of the fluid, p is the
fluid density, p is the hydrodynamic pressure and F, is the
force exerted on the body in the x-direction. The suffixes

—o0 and + oo denote the left and right infinite
boundaries, respectively. The hydrodynamic pressure is

expressed as
AR
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where g is the gravity acceleration, { the time, @ is the

fluid velocity potential and p; is the atmospheric pressure.
We can let the atmospheric pressure p, be zero without
losing generality. Substituting Eq. (2) to Eq. (1) yields
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where ( is the wave elevation on the surface. The force
expressed in Eq. (3) is an instantaneous one, including the
mean drift force.

2.2 Bichromatic wave potentials

The first order wave potentials for the incoming and
outgoing waves of different frequencies are defined. The
incoming waves are bichromatic, or two waves of different

frequencies. And each disturbed wave has its own
independent frequency and amplitude.
Each velocity potential satisfies the boundary conditions.

The boundary condition at the free surface is

aP
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and the kinematic condition is

3 8P

% (2] ®
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The first order velocity potential of the bichromatic waves
is assumed to be a linear sum of components as

& =0+, =Regie ™ +Rege " (6)

where ¢; and ¢, are complex potentials associated with the
wave circular frequencies o; and o;. The suffix 2 and j
denote the wave frequencies, while ¢ in the superscript

denotes the complex quantity ¢ = +/— 1. Each component
of the wave potentials satisfies the dynamic boundary

conditions as
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where K,=o0%/g is a wave number. The boundary
condition in Eq. (7) also holds for the wave potential ¢;.
The regular waves progressing in the x-direction are
expressed by

oy =che 8)
where the wave amplitude is h; and the wave celerity is
¢;=0,/K. At a great distance from the body, the radiation
and diffraction waves caused by the cylinder take the form

of regularly progressing outward. Hence, z— — o, it can be
written

- K +iKx
¢g;=c;d; e Y (9)
and at z— + oo
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for a wave of circular frequency o ir where A+ and A- are

the amplitudes in complex quantity. The resultant velocity
potential for the bichromatic wave system with frequencies

o, and 0; is written as

b=y tbp,+ P T ¢Bj (11)
The wave elevation from Eq. (4) is obtained as
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Applying Eq. (12) to Eq. (3), it is further simplified as
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We can put dM/dt=0, without losing generality. The force
equation, Eq. (13), accounts for all of the time variant

and invariant forces acting on the cylinder. The next

step is to identify and extract the slowly varying forces
from Eq. (13).

2.3 Slowly varying drift force
As given in Eq. (13), the force exerted on the body can,

in principle, be arranged in terms of (0, , o, , 20, 20,
o, 0j, 0; + o ) as
F,=Re[FP+ FP+ FVe " + FVe (14)
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where the superscript number denotes the order of the force
with respect to the wave amplitudes. The first two terms

denote the mean drift force with ﬂ(z) = O(hf (O’i)) and
F;-(2)= O(h? (O'j)). The terms F;(l) = O(hi (crz-))
FJ,,-(l) = O(h i (orj)) are the first order forces at each
frequency, F}m): O(h?(ff@)) and ij: O(hf-(aj)) are
the second double frequency
E(fL) = O(h, (oi)hj (aj)) is the second order slowly
varying force term coupled by

and

order ferms,

two frequencies and

FL(J,.%} = O(h;(0;)h;(c;)) is the second order fast frequency
term.

The mean drift force terms are derived by Maruo(1960)
from Eq. (14) taking the zeroth order or time average of the
momentum conservation to the monochrome frequency
wave. The same equation Eq. (14) is now directly applied to
the bichromatic waves to derive the time dependent slowly
varying force.

Using Eq. (6), (8), (9), and (12), each partial derivative in
Eq. (13) is evaluated as
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Rr=he 44767 (16b)
Ry=he "M% —A7e™" (16c)
+ zﬁ T
Rf=he "+ Ae (16d)
B=he T4 Afe (16€)
P=he 4 AT (16f)

Expending all of the force terms in Eq. (13), the slowly
varying components are collected and rearranged. To make
it easy, an operator £ [ |is defined to extract the low
frequency parts as shown in the Appendix. The first term in
Eq. (13) is written using Eq. (15a, b) and Eq. (16a-d) as

1 [0 [{ad) 8® \*
F;%‘)l =4 [Epf_ [( ox ) _( oy ) }dy] (17)
. 1 O-z'o-j * Sttt i(o-f_o-j)t

In an analogous way, we can show that the slowly varying
part of the second term in Eq. (13) vanishes as
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A=k, [ {( )—(%ji)m}dy] N
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and the third term in Eq. (13) contributes only the first
order force, which plays an important role in the first order
motion analysis as

p/ (5] A5 Jo
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The fourth term in Eq. (13), resulting from the wave
elevation at the infinity boundary, is in terms of Eq. (16e)
and Eq. (16f) written as

P =rl= pg(c_ —&)] (20)
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The sum of the slow varying terms Eq. (17)~Eq. (20) is then
written as
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Equation (21) is then further simplified wusing the
relationships
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and considering the asymptotic behavior of
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This shows that the quantity in Eq.(23) is of the square
order of the frequency difference. Since we are looking for
the asymptotic expression of the slowly varying force for
small difference in incident wave frequencies, the term of
higher order with respect to the frequency difference can be
neglected. Reordering Eq. (21) with Eq. (22) and Eq. (23) the
slowly varying force is written as

1 —iKz, +ikK;
1:1222 =3 pgReh.e he Rk (24)

+ A,a-*ei]{;mflj_*e_”gm

Equation (24) is a final form of the slowly varying second
order force obtained from Eq. (13). Some interpretation of
Eq. (24) is necessary to understand the next step.

An examination of Eq. (24) shows that there are terms
with e (K~ Kz —(0;—0)t) and ei((lf;—ff;-)ﬁ(ai—aj)t)

gives the

. The former

slowly varying force due to the waves
propagating in the positive x-direction, ie. the incident and
transmission waves, and the later gives the force due to the
waves propagating in the negative x-direction, ie. the
reflection waves. It also says that the second order slowly
varying force is differently observed depending on the
observation location x. Once the location x is fixed, the
slowly varying force is observed as the function of just the

frequency difference o, —o;. The observation location may

vary, but the magnitude of the second order slowly varying
force does not change, only the phase changes.

Though the formulation starts in the far field from the
cylinder body, the final solution for the slowly varying force
acting on the cylinder can be observed at any location, even
at the originn We can put x=0 for observation at the
origin.

For simplicity, we can define the reflection and

transmission coefficients as

A =rhe™ (25a)
— ?lerj
A i =T h £ (25b)
h,+ A" =the" (25¢)
+ i€
h;+A; =the (25d)

where 7, t, ¢ stands for the reflection coefficients, the
transmission coefficients and the phase, respectively. And 7,
t, and € are real. The energy relation between the
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transmission and reflection coefficients holds as
r+te=1, r+=1 (26)

Equation (25) is rewritten as

FZ)

1
Epghihj

= Re [(1 + rirjei(e”' e titjei(eﬁ “e) )eé(a’i _Jj)t} (27)

The magnitude of the slowly varying force is then

|73
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Epghihj

Equation (28) shows the nature of the slowly varying force,
which is the sum of the interactions between the reflection
waves and transmission waves. The effect of disturbances by
the floating or fixed body, including the radiation and
diffraction potentials, are carried in the reflection and
transmission waves at the far field.

In conclusion, the slowly varying force in 2-dimension can
be computed if the reflecion and transmission waves
including their phases are known. There is no need to
evaluate the velocity square terms in this far field approach.

3. Discussion

The validity of Eq. (28) is discussed, taking the limit
cases. One is an asymptote of the frequency difference to
the mean drift force, the other is the analytical results of
the slowly varying force for a simple two dimensional
structure, used for comparison. It gives clear physical
insight into the nature of the slowly varying force.

3.1 Asymptote to the mean drift force
When the two waves of the bichromatic wave train are

identical, the slowly varying force in Eq. (27) formally
becomes

P _ . IS

T =lm— =2r (29)
_2‘109}%' JH@ Epgh’z'h’j

In the limit, the slowly varying force approaches the mean
drift force which is already known (Maruo 1960). It appears
to be twice the mean drift force of the monochrome

wave. Actually it is the limiting value of two waves,

not one. The quadratic transfer function is then half of
Eq. (28).

3.2 A solution example for a fixed vertical surface barrier
The analytic solution for the transmission and reflection
waves is known for a fixed thin vertical surface barrier.
Using the solution the slowly varying force can easily be
calculated by applying Eq. (28).

The reflection and transmission coefficients for a thin
barrier with draft ) are given in terms of the second

kind Bessel function (Wehausen and Laitone, 1960} as

r(o’) = Tl (30a)
V'L o) + Ko
K (o)
t(o') = 30b
Vo) + KX o) e
e, =tan (K /7l) (30c)
(=T (30d)

where ¢’ =0/ D/g is the nondimensionalized frequency.
The magnitude of the slowly varying force coefficients, as
obtained from the right side of Eq. (28), is plotted in Fig. 1.

3.2 An approximation with minimal information
Often it is necessary to approximate the slowly varying
forces without knowing details about the hydrodynamics

during the design stage. If the reflection and
transmission, as well as their phases, are not known, a
crude approximation can help. For this purpose,
Newman(1967) suggested an approximation formula,
i
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Fig. 1 The slowly varying drift force coefficients of
the vertical barrier
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validity of which was discussed by the authors. A new
approximation can also be suggested using Eq. (27).

Assuming that the reflections are small and the phases are
all equal, we can expand Eq. (27) using Eq. (26) in a series
form as

(2)

< Re[{(1+rr—tig;) e (31)
Epghihj
ilo;—o)t
=Re(1+ri7‘j-\/1—rf—r?+rfrj2- Je
1 ilo,—a.
~ (rr+ = (2 +r2))e

72

[

1 2
—-2—-(7'%- —I—'rj) COS (az- — crj) t

This approximation needs only the reflection coefficients of
the component, r; and 7;. And the approximation is neither

a geometric or arithmetic mean. We can easily show the
inequality with the geometric and arithmetic mean as

2+ /) < %(Tf +12) (32)

Readers can see that the first term in Eq. (32) was used
by Newman(1976) as an approximation, and that there is
a slight difference between Newman’s equation and Eq.
(31). The latter approximation gives a safer prediction.

5. Condlusions

A far field solution of the slowly varying force acting on a
long cylinder in bichromatic waves was presented. The
explicit form solution says that once the transmission and
reflection waves, along with their magnitude and phases, are
known, the slowly varying force can be predicted.

The validity of the solution was proved by showing that
the slowly varying force approaches the mean drift force in
the limit. For further comparison the numerical result of the
slowly varying drift force on a thin vertical fixed surface
barrier was presented for which the analytical solution of the
transmission and reflection coefficients was known.

A simple approximation based on the far field solution was
also suggested for practical application.
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Appendix

A. An operator for extracting the low frequency part
Let U=Re(A "™ +Ae

to,t

) with complex quantities A

and A,. By substituting A4,, =amew’“ and A, :aneib" with

real o, and 3,, the square of ¥ is then given as

v’ ={a, cos (8,
- %afn + %a%cos? (8, +0o,t)

+ —;—ai + %aicos? (B, +o,t)
+a,_a,cos(B +3, +(o, +o,)t)

+a,_a,cos(8,—06,+ (0, —0,)t)

+o0,t)+a,cos (B, +o,t)} * (A1)

last term denotes the slowly varying frequency
difference term. Let us define a new operator, so that the
low frequency second order, or frequency difference part, is

collected as

£ %)= £ {Re(4, 6 + 4,7}

=a, o, cos(B,—8,+ (o, —0,)t)
(B~ Bn +lom —0on)t)

(A.2)

= Rea, o €

:Reameﬁ(ﬁm—i_gmt) ne'_z(ﬁn +Unt)

= Re AmewmtA: e "7

:%RE{AmA:+(AmA:)*}ei(gm_o-n)t
20083 1¥ 79 3 AHS

20083 39 319 FHF FAHE A9



