• Title/Summary/Keyword: Ocean Tidal Model

Search Result 328, Processing Time 0.025 seconds

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

Estimating Ocean Tidal Constituents Using SAR Interferometric Time Series over the Sulzberger Ice Shelf, W. Antarctica

  • Baek, Sang-Ho;Shum, C.K.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.343-353
    • /
    • 2018
  • Ocean tides in Antarctica are not well constrained mostly due to the lack of tidal observations. Especially, tides underneath and around ice shelves are uncertain. InSAR (Interferometric Synthetic Aperture Radar) data has been used to observe ice shelf movements primarily caused by ocean tides. Here, we demonstrate that it is possible to estimate tidal constituents underneath the Sulzberger ice shelf, West Antarctica, solely using ERS-1/2 tandem mission DInSAR (differential InSAR) observations. In addition, the tidal constituents can be estimated in a high-resolution (~200 m) grid which is beyond any tidal model resolution. We assume that InSAR observed ocean tidal heights can be derived after correcting the InSAR data for the effect of atmospheric loading using the inverse barometric effect, solid earth tides, and ocean tide loading. The ERS (European Remote Sensing) tandem orbit configuration of a 1-day separation between SAR data takes diminishes the sensitivity to major tidal constituents including $K_1$ and $S_2$. Here, the dominant tidal constituent $O_1$ is estimated using 8 differential interferograms underneath the Sulzberger ice shelf. The resulting tidal constituent is compared with a contemporary regional tide model (CATS2008a) and a global tide model (TPXO7.1). The InSAR estimated tidal amplitude agrees well with both models with RMS (root-mean-square) differences of < 2.2 cm and the phase estimate corroborating both tide models to within $8^{\circ}$. We conclude that fine spatial scale (~200 m) Antarctic ice shelf ocean tide determination is feasible for dominant constituents using C-band ERS-1/2 tandem mission InSAR.

A Numerical Tidal Model for the Southeast Asian Seas (南東 아시아 海域의 潮汐 數値 模型)

  • Byung Ho Choi;Duk Gu Kim;Dong Hoon Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 1997
  • The tidal propagation for the Southeast Asian Seas is described via a high-resolution, two-dimensional hydrodynamic model by the equilibrium tide and co-oscillating tide at the Straits. Computed tidal distributions of four major semidiurnal tides (M$_2$, S$_2$, $K_2$, $N_2$) and four major diurnal tides (K$_1$, $O_1$, P$_1$, Q$_1$) are presented and results are also compared with coastal observations archived in IHO global tidal data base (Canadian Marine Environmental Data Service) and existing tidal charts including Schwiderski GOTD(Global Ocean Tidal Data) maps.

  • PDF

Study on Tidal Current Simulation and its Application to Speed Trial around Straits of Korea (대한해협에서의 선박의 속력 시운전시 조류 예측에 관한 연구)

  • Lee, Hee-Su;Choi, Dai-Hyun;Park, Jong-Chun;Jeong, Se-Min;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.23-29
    • /
    • 2010
  • Korean shipbuilding companies have sometimes carried out sea trials to measure a vessel's speed performance around the western channel of the Straits of Korea, where the flow fields are very complicated because of the effect of various flows such as sea, tidal, geostrophic, and wind-driven currents. Because these flows seem to present significant interference to a ship, the numerical reproduction of the flow-fields in the vicinity of the target sites could provide a better understanding of the sea environments while performing sea trials. In this study, we used the MEC ocean model to simulate the tidal currents around Tsushima Island and compared the simulated tidal amplitudes and currents with the measurements of Teague et al. (2001). The tidal amplitudes of the present simulation results agreed well with the observations. Based on the numerical simulation, the optimal direction and proper sites for a speed trial are described.

Current Systems in the Adjacent Seas of Jeju Island Using a High-Resolution Regional Ocean Circulation Model (고해상도 해양순환모델을 활용한 제주도 주변해역의 해수유동 특성)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.211-223
    • /
    • 2020
  • With the increasing demand for improved marine environments and safety, greater ability to minimize damages to coastal areas from harmful organisms, ship accidents, oil spills, etc. is required. In this regard, an accurate assessment and understanding of current systems is a crucial step to improve forecasting ability. In this study, we examine spatial and temporal characteristics of current systems in the adjacent seas of Jeju Island using a high-resolution regional ocean circulation model. Our model successfully captures the features of tides and tidal currents observed around Jeju Island. The tide form number calculated from the model result ranges between 0.3 and 0.45 in the adjacent seas of Jeju Island, indicating that the dominant type of tides is a combination of diurnal and semidiurnal, but predominantly semidiurnal. The spatial pattern of tidal current ellipses show that the tidal currents oscillate in a northwest-southeast direction and the rotating direction is clockwise in the adjacent seas of Jeju Island and counterclockwise in the Jeju Strait. Compared to the mean kinetic energy, the contribution of tidal current energy prevails the most parts of the region, but largely decreases in the eastern seas of Jeju Island where the Tsushima Warm Current is dominant. In addition, a Lagrangian particle-tracking experiment conducted suggests that particle trajectories in tidal currents flowing along the coast may differ substantially from the mean current direction. Thus, improving our understanding of tidal currents is essential to forecast the transport of marine pollution and harmful organisms in the adjacent seas of Jeju Island.

Application of the Landsat TM/ETM+, KOMPSAT EOC, and IKONOS to Study the Sedimentary Environments in the Tidal Flats of Kanghwa and Hwang-Do, Korea

  • Ryu Joo-Hyung;Lee Yoon-Kyung;Yoo Hong-Rhyong;Park Chan-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.140-143
    • /
    • 2004
  • The west coast of the Korean Peninsula is famous for its large tidal range (up to 9 m) and vast tidal flats. With comparison the sedimentary environments of open and close tidal flat using remote sensing, we select Kanghwa tidal flat and Hwang-Do tidal flat in Cheonsu Bay. Prior to surface sediment discrimination using remote sensing, sedimentary environments including intertidal OEM, hydraulic condition, and relationship between grain size and various tidal condition are investigated. Remote sensing has the potential to provide synoptic information of intertidal environments. The objectives of this study are: (i) to generate an intertidal digital elevation model (OEM) using the waterline method of Lansat TM/ETM+, (ii) to investigate the tidal channel distribution using texture analysis, and (iii) to analyze the relationship between surface grain size by using in-situ data and intertidal OEM and tidal channel density by using high-resolution satellite data such as IKONOS and Kompsat EOC. The results demonstrate that satellite remote sensing is an efficient and effective tool for a surface sediment discrimination and long term morphologic change estimation in tidal flats.

  • PDF

$M_2$ Numerical Model of the Global Ocean Tides (전지구 해양의 $M_2$조석 수치모형)

  • 서경석;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.161-173
    • /
    • 1996
  • Two-dimensional numerical models with 1$^{\circ}$ and 1/3$^{\circ}$ resolution have been established to investigate the Ma distribution of global ocean tides. Especially, a 1/3$^{\circ}$ numerical model in this study has the most fine resolution among the existing global tidal model and it has been applied to the computation of detailed tidal distributions in the marginal seas and the shelf seas. Tidal characteristics in shallow areas could be hardly interpreted with the existing global chart due to the low resolution. The Ma tidal charts obtaind by 1$^{\circ}$ and 1/3$^{\circ}$ numerical model have been compared with the existing global maps and the altimetry-derived tidal charts. Also, the computed harmonic constants have been compared with the pelagic observations. The results obtained by 1/3$^{\circ}$ numerical model show better agreement with the existing global charts and the observed data than those obtained by 1$^{\circ}$ model. The possibility has been presented that the results obtained by 1/3$^{\circ}$ model can provide the open boundary conditions of the regional tidal numerical model.

  • PDF

Vertical Distribution of Tidal Current in the Korea Strait (대한해협조류의 3차원적 분포)

  • 최병호;방인권;김경환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.421-438
    • /
    • 1994
  • Vertical distribution of tidal currents in the Korea Strait is computed by a tree-dimensional tidal model. The results are presented in the from of tidal charts (coamplitude and cophase chart) and (tidal ellipses charts for eight tidal constituents (M$_2$, S$_2$, $N_2$, $K_2$, $K_1$, $O_1$, P$_1$, Q$_1$) and of harmonic constants for predictions of tides and tidal currents during specified duration in the region. The computed tides were in general agreement with coastal observations and observation-based tidal charts of Odamaki (1989). Comparison between model computation and current observation by RIAM were also presented.

  • PDF

Numerical Simulation for Behavior of Tidal Elevation and Tidal Currents in the South Sea (남해안의 조위 및 조류거동 수치모의)

  • Kwon, Seok-Jae;Kang, Tae-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.253-265
    • /
    • 2007
  • This study applied the previous results of the NAO model, a tidal correction model, to the open boundary condition for the behavior of tidal elevation and tidal currents in the South Sea. This study used the EFDC model considering the wetting and drying problem and using the $\sigma-coordinate$ as a vertical coordinate and generated two mesh cases of the constant grid size of 2.0 km and the variable grid size of $0.5\sim2.0km$. The numerical results for the tides showed that the predicted results were in quite good agreements with the observational data acquired from the tidal stations of the NORI. The predicted tides were observed to propagate from the east area to the west area in the South Sea. The verification results reveal that the numerical results are more correlated with the measured tidal data as the grid size decreases. The grid size of 2 km results in proper simulation of tidal currents in wide waterway and offshore area whereas the numerical results from the grid size of 0.5 km tend to somewhat underestimate the tidal currents affected by narrow waterway and topography in inner-bay.

How Much Power can be Obtained from the Tides?

  • Garrett, Chris
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.74-79
    • /
    • 2006
  • General formula are presented for the maximum power available from the tidal head in a closed basin and from the tidal currents in a channel connecting two large bodies of water. In the latter case, the available energy cannot be estimated from the kinetic energy flux in the undisturbed state, but can be obtained from knowledge of the tidal head between the ends of the channel and the maximum volume flux in the undisturbed state. The results are supported by detailed calculations for Johnstone Strait, British Columbia, using a two-dimensional finite element model. The model also allows an extension to the case of multiple channels. More work is needed to allow for partial tidal fences which do not occupy the whole cross-section of a channel.

  • PDF