Numerical Simulation for Behavior of Tidal Elevation and Tidal Currents in the South Sea

남해안의 조위 및 조류거동 수치모의

  • 권석재 (해양수산부 국립해양조사원) ;
  • 강태순 ((주)지오시스템리서치)
  • Published : 2007.06.30

Abstract

This study applied the previous results of the NAO model, a tidal correction model, to the open boundary condition for the behavior of tidal elevation and tidal currents in the South Sea. This study used the EFDC model considering the wetting and drying problem and using the $\sigma-coordinate$ as a vertical coordinate and generated two mesh cases of the constant grid size of 2.0 km and the variable grid size of $0.5\sim2.0km$. The numerical results for the tides showed that the predicted results were in quite good agreements with the observational data acquired from the tidal stations of the NORI. The predicted tides were observed to propagate from the east area to the west area in the South Sea. The verification results reveal that the numerical results are more correlated with the measured tidal data as the grid size decreases. The grid size of 2 km results in proper simulation of tidal currents in wide waterway and offshore area whereas the numerical results from the grid size of 0.5 km tend to somewhat underestimate the tidal currents affected by narrow waterway and topography in inner-bay.

본 연구의 대상영역인 남해안의 조위 및 조류 수치모의를 위해 조석 보정용 모델인 NAO.99의 기존결과를 외해 개방경계 조건에 적용하였다. 조간대를 고려할 수 있고 $\sigma$-좌표계를 사용하는 EFDC 모형을 이용하여 2 km의 직교 정격자와 $0.5\sim2.0km$의 가변직교격자를 사용한 두 개의 격자망을 구축하였다. 조위수치모의 결과에서 예측값과 국립해양조사원 조위검조소의 관측값이 잘 일치하였으며 남해안 동측에서 서측으로의 조석의 전파를 보여주었다. 검증 결과 격자크기가 감소할수록 조위관측 자료와 더 높은 상관관계를 보였으며 0.5 km의 격자크기로 인한 수치모의 결과가 내만의 협수로 및 지형의 영향을 크게 받는 조류를 다소 과소 산정하는 경향을 가지는 반면에 넓은 수로 및 외해역 자료의 경우에는 2 km 격자로 조류의 적절한 재현이 가능하였다.

Keywords

References

  1. 강관수 (1994). 유사변환기법을 이용한 3차원 해수유동 수치모형. 박사학위논문, 서울대학교
  2. 건설교통부 (2006). 수자원장기종합계획 보완(안)
  3. 박용향, 김성일 (1987). 제주도 주변의 조석 잔차류에 대한 수치모델 연구. Journal of the Oceanological Society of Korea, 22(1), 9-18
  4. 서승원, 이화영 (2007). 병렬 클러스터 시스템 구축 및 유한요소모형을 이용한 황해 조석재현. 한국해안.해양공학회지, 19(1), 1-15
  5. 승영호, 김균 (1993). 동해 순환의 수치모델. Journal of the Oceanological Society of Korea, 28(4), 292-304
  6. 신상익, 승영호 (1993). 혼합율 개념을 이용한 서해 중부 조석전선의 수치모델. Journal of the Oceanological Society of Korea, 28(2), 121-131
  7. 이석우 (2004). 해양정보 130가지. 집문당, 대한민국
  8. 이호진 (1999). 3차원 유한차분-Galerkin 함수 전개 모형을 이용한 황해 및 동중국해의 해수순환 연구. 박사학위논문, 서울대학교
  9. 임근식, 김구 (1995). 울릉 난수성 Eddy와 해저지형과의 상호작용에 관한 수치모델 연구. Journal of the Korean society of Oceanography, 30(6), 565-583
  10. 지오시스템리서치(주) (2002). 시화멀티테크노밸리 제5공구 조성공사 턴키설계를 위한 수치모형 실험 및 해양조사, (주)대우건설
  11. 지오시스템리서치(주) (2004). 송도 신도시 6.8공구 공유수면 매립 실시설계 용역중 해양조사 및 수치모형실험 (주)대영엔지니어링/(주)한구엔지니어링
  12. 최병호 (1984). 3차원 수치모델을 이용한 동지나해의 정상균일풍의 응력에 의한 해류의 산정. Journal of the Oceanological Society of Korea, 19(1), 36-43
  13. 최병호 (2000). 연안재해 대응기술 개발. 과학기술처
  14. 최병호, 홍성진 (2005). 둥지형 동적결합 조석 모형을 이용한 황해 및 동중국해의 조석모형. 한국해안.해양공학회지, 17(4), 243-258
  15. 건설교통부 (2005). 한국하천일람
  16. 한국해양연구원 (2003). 대규모 연안개발에 따른 조위예측 연구개발. 보고서
  17. American Geophysical Union (1999). American Geophysical Union Fall Meeting, San Fransisco, California, December 13-17
  18. Arakawa, A. and Lamb, V.R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, 174-265
  19. Galperin, B., Kantha, L.H., Hassid, S. and Rosati, A. (1988). A quasi-equilibrium turbulent energy model for geophysical flows. J. of Atmos. Sci., 45, 55-62 https://doi.org/10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
  20. Hamrick, J.M. (1992). A three dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. Special Report, The College of William and Mary, Virginia Institute of Marine Science, Glouceslter Point, VA
  21. Hamrick, J.M. (1994a). Evaluation of island creation alternatives in the Hampton Flats of the James River. A report to the US Army Corps of Engineers, The College of William and Mary, Vrginia Institute of Marine Science, Glouceslter Point, VA
  22. Hamrick, J.M. (1994b). Application of the EFDC (Environmental Fluid Dynamic Computer code) to SFWMD Water Conservation Area 2A. A report to South Florida Water Management District. JMH-SFWMD-94-01, Consulting Engineer, Williamsburg, VA
  23. Hamrick, J.M., Kuo, A.Y. and Shen, J. (1995). Mixing and dilution of the Surrey Nuclear Power Plant cooling water discharge into the James River. A report to Virginia Power Company, The College of William and Mary, Virginia Institute of Marine Science, Glouceslter Point, VA
  24. Hamrick, J.M. (1996). Application of the EFDC hydrodynamic model to Lake Okeechobee. A report to South Florida Water Management District, JMH-SFWMD-96-2. J.M. Hamrick, Consulting Engineer, Williamsburg, VA
  25. Hamrick, J.M. (1996). User manual for the environmetal fluid dynamics compute code, Special Report, The College of William and Mary, Virginia Institute of Marine Science, Glouceslter Point, VA
  26. Kim, C.H. and Yoon, J.H., (1999). A numerical modelling of the upper and the intermediate layer circulation in the East Sea. Journal of Oceanography, 55(2), 327-345 https://doi.org/10.1023/A:1007837212219
  27. Kim, K.J., Seung, Y.H. and Suk, M.S. (2001). POM/MICOM inter comparison in modelling the East Sea circulation. Ocean and Polar Research, 23(2), 161-172
  28. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000), Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 56(5), 567-581 https://doi.org/10.1023/A:1011157212596
  29. Lee, H.J., Yoon, J.H., Kawamura, H., Kang, H.W. (2003). Comparison of RIAMOM and MOM in Modelling the East Sea/Japan Sea Circulation. Ocean and Polar Research, 25(3), 287-302 https://doi.org/10.4217/OPR.2003.25.3.287
  30. Mellor, G.L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875 https://doi.org/10.1029/RG020i004p00851
  31. Oey, L.Y., Mellor, G.L. and Hires, R.I. (1985). A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulations. J. Physical Oceanography, 15, 1676-1692 https://doi.org/10.1175/1520-0485(1985)015<1676:ATDSOT>2.0.CO;2
  32. Oey, L.Y., Mellor, G.L. and Hires, R.I. (1985). A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observation. J. Physical Oceanography, 15, 1693-1709 https://doi.org/10.1175/1520-0485(1985)015<1693:ATDSOT>2.0.CO;2
  33. Oey, L.Y. (2006). An OGCM with movable land-sea boundaries. Ocean Modelling, 13, 176-195 https://doi.org/10.1016/j.ocemod.2006.01.001
  34. Smolarkiewicz, P.K. and Clark, T.L. (1986). The multidimensional positive definite advection transport algorithm: Further development and applications. Journal of Computational Physics, 67(2), 396-438 https://doi.org/10.1016/0021-9991(86)90270-6
  35. Smagorinsky, J. (1963). General circulation experiments with the primitive equations, I. The basic experiment. Mon. Weather Rev., 91, 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2