DOI QR코드

DOI QR Code

Estimating Ocean Tidal Constituents Using SAR Interferometric Time Series over the Sulzberger Ice Shelf, W. Antarctica

  • Baek, Sang-Ho (Dept. of Civil Engineering and Environmental Sciences, Korea Military Academy) ;
  • Shum, C.K. (Div. of Geodetic Science, School of Earth Sciences, Ohio State University)
  • Received : 2018.09.17
  • Accepted : 2018.10.26
  • Published : 2018.10.31

Abstract

Ocean tides in Antarctica are not well constrained mostly due to the lack of tidal observations. Especially, tides underneath and around ice shelves are uncertain. InSAR (Interferometric Synthetic Aperture Radar) data has been used to observe ice shelf movements primarily caused by ocean tides. Here, we demonstrate that it is possible to estimate tidal constituents underneath the Sulzberger ice shelf, West Antarctica, solely using ERS-1/2 tandem mission DInSAR (differential InSAR) observations. In addition, the tidal constituents can be estimated in a high-resolution (~200 m) grid which is beyond any tidal model resolution. We assume that InSAR observed ocean tidal heights can be derived after correcting the InSAR data for the effect of atmospheric loading using the inverse barometric effect, solid earth tides, and ocean tide loading. The ERS (European Remote Sensing) tandem orbit configuration of a 1-day separation between SAR data takes diminishes the sensitivity to major tidal constituents including $K_1$ and $S_2$. Here, the dominant tidal constituent $O_1$ is estimated using 8 differential interferograms underneath the Sulzberger ice shelf. The resulting tidal constituent is compared with a contemporary regional tide model (CATS2008a) and a global tide model (TPXO7.1). The InSAR estimated tidal amplitude agrees well with both models with RMS (root-mean-square) differences of < 2.2 cm and the phase estimate corroborating both tide models to within $8^{\circ}$. We conclude that fine spatial scale (~200 m) Antarctic ice shelf ocean tide determination is feasible for dominant constituents using C-band ERS-1/2 tandem mission InSAR.

Keywords

References

  1. Baek, S., Kwoun, O.-I., Braun, A., Lu, Z., and Shum, C. K. (2005), Digital elevation model of King Edward VII Peninsula, West Antarctica, from SAR interferometry and ICESat laser altimetry, IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 4, pp. 413-417. https://doi.org/10.1109/LGRS.2005.853623
  2. Brunt, K. M., King, M., Fricker, H. A., and MacAyeal, D. R. (2010), Flow of the Ross Ice Shelf, Antarctica, is modulated by the ocean tide. J. Glaciol., Vol. 56, No. 195, pp. 157-161. https://doi.org/10.3189/002214310791190875
  3. Cartwright D. E. and Tayler, R. J. (1970), New computations of the tide-generating potential, Geophysical Journal International, Vol. 23, No. 1, pp. 45-73.
  4. Cressie, N. (1993), Statistics for Spatial Data, (2nd ed.), John Wiley & Sons Ltd., New York, N.Y.
  5. Egbert, G. D. and Erofeeva, L. (2002), Efficient inverse modeling of barotropic ocean tides, Journal of Atmospheric and Oceanic Technology, Vol. 19, No. 2, pp. 183-204 https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  6. Ferrigno, J. G., Williams, R. S., Rosanova Jr., C. E., Lucchitta, B. K., and Swithinbank, C. (1998), Analysis of coastal change in Marie Byrd Land and Ellsworth Land, West Antarctica, using Landsat imagery, Annals of Glaciology, Vol. 27. pp. 33-40. https://doi.org/10.3189/1998AoG27-1-33-40
  7. Fok, H. S., Iz, H. B., Shum, C. K., Yi, Y., Andersen, O., Braun, A., Chao, Y., Han, G., Kuo, C. Y., Matsumoto, K., and Song, Y. T. (2010), Evaluation of Ocean Tide Models Used for Jason-2 Altimetry Corrections, Marine Geodesy, Vol. 33. No. S1, pp. 285-303.
  8. Fricker, H. A. and Padman, L. (2002), Tides on Filchner-Ronne Ice Shelf from ERS radar altimetry, Geophysical Research Letters, Vol. 29, No. 12, pp. 50-1-50-4. https://doi.org/10.1029/2001GL014175
  9. Gibson, J. K., Kallberg, P., Uppala, S., Hernandez, A., Nomura, A., and Serrano, E. (1997), ERA Description. Re-Analysis (ERA) Project Report Series 1, ECMWF, Shinfield Park, Reading, U.K., 1997.
  10. Goldstein, R. M., Zebker, H. A., and Werner, C. L. (1988), Satellite radar interferometry: two-dimensional phase unwrapping, Radio Science, Vol. 23, No. 4, pp. 713-720. https://doi.org/10.1029/RS023i004p00713
  11. Han, S. C, Ray, R., and Luthcke, S. B. (2007), Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data, Geophysical Research Letters, Vol. 34, No. 21.
  12. Han, S. C, Ray, R., and Luthcke, S. B. (2010), One centimeterlevel observations of diurnal ocean tides from global monthly mean time-variable gravity fields, Journal of Geodesy, Vol. 84, No. 12, pp. 715-729. https://doi.org/10.1007/s00190-010-0405-3
  13. Huber, S., Younis, M., and Krieger, G. (2010), The TanDEM-X mission: overview and interferometric performance, Int. J. Microwave and Wireless Technol., Vol. 2, pp. 379-389. https://doi.org/10.1017/S1759078710000437
  14. King, M. and Padman, L. (2005), Accuracy assessment of ocean tide models around Antarctica. Geophysical Research Letters, Vol. 32.
  15. King, M., Penna, N. T., Clarke, P. J., and King, E. C. (2005), Validation of tide models around Antarctica using onshore GPS and gravity data, Journal of Geophysical Research: Solid Earth, Vol. 110.
  16. King, M., Murray, T., and Smith, A. (2010), Non-linear responses of Rutford Ice Stream, Antarctica, to semidiurnal and diurnal tidal forcing, Journal of Glaciology, Vol. 56, No. 195.
  17. Lefevre, F., Lyard, F. H., Le Provost, C., and Schrama, E. J. O. (2002), FES99: A global tide finite element solution assimilating tide gauge and altimetric information, Journal of Atmospheric and Oceanic Technology, Vol. 19, No. 9, pp. 1345-1356. https://doi.org/10.1175/1520-0426(2002)019<1345:FAGTFE>2.0.CO;2
  18. Legresy, B., Wendt, A., Tabacco, I. E., Remy, F., and Dietrich, R. (2004), Influence of tides and tidal current on Mertz Glacier, Antarctica, Journal of Glaciology, Vol. 50, No. 170, pp. 427-435. https://doi.org/10.3189/172756504781829828
  19. Lutjeharms J. R. E., Stavropoulos C. C., and Kolterman, K. P. (1985), Tidal measurements of the Antarctic coastline. In: Oceanology of the Antarctic Continental Shelf, Antarctic Research, Vol. 43, Jacobs, S.S. (ed.), American Geophysical Union, Washington D.C., pp. 273-289.
  20. Matsumoto, K., Takanezawa, T., and Ooe, M. (2000), Ocean tide models developed by assimilating TOPEX/ POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, Vol. 56, No. 5, pp. 567-581. https://doi.org/10.1023/A:1011157212596
  21. McCarthy, D. (1996), IERS Conventions, IERS Technical note 21.
  22. McCarthy, D. (2003), IERS Conventions, IERS Technical note 32.
  23. Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, S. (2002), A new tidal model for the Antarctic ice shelves and seas, Annals of Glaciology, Vol. 34, No. 1, pp. 247-254. https://doi.org/10.3189/172756402781817752
  24. Padman, L., Erofeeva, S., and Joughin, I. (2003a), Tides of the Ross Sea and Ross Ice Shelf cavity, Antarctic Science, Vol. 15, No. 1, pp. 31-40. https://doi.org/10.1017/S0954102003001032
  25. Padman, L, King, M., Goring, D., Corr, H., and Coleman, R. (2003b), Ice shelf elevation changes due to atmospheric pressure variations, Jounal of Glaciology, Vol. 49, No. 167, pp. 521-526. https://doi.org/10.3189/172756503781830386
  26. Padman, L., Erofeeva, S. Y., and Fricker, H. A. (2008), Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves, Geophysical Research Letters. Letts, Vol. 35.
  27. Pugh, D. T. (1996), Tides, Surges, and Mean Sea Level, John Wiley & Sons Ltd., New York, N.Y.
  28. Ray, R. D. (1999), A global ocean tide model from Topex/Poseidon altimetry: GOT99.2, NASA Tech. Memo. 209478, Goddard Space Flight Center.
  29. Ray, R. D. (2007), Tidal analysis experiments with sunsynchronous satellite altimeter data, Journal of Glaciology, Vol. 81, pp. 247-257.
  30. Ray, R. D. (2009), Tide correction errors, Ocean Surface Topography Science Team (OSTST) Meeting, Seattle, Washington.
  31. Riedel, B, Nixdorf, U., Heinert, M., Eckstaller, A., and Mayer, C. (1999), The response of the Ekstromisen (Antarctica) grounding zone to tidal forcing, Annals of Glaciology, Vol. 29, pp. 239-242 https://doi.org/10.3189/172756499781821247
  32. Rignot, E., Padman, L., MacAyeal, D. R., and Schmeltz, M. (2000), Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry: Comparison with tide model predictions, Journal of Geophysical Research, Vol. 105, No. C8, pp. 19615-19630. https://doi.org/10.1029/1999JC000011
  33. Rodriguez, E. and Martin, J. M. (1992), Theory and design of interferometric synthetic aperture radars, IEE Proceedings-F, Vol. 139, No. 2, pp. 147-159. https://doi.org/10.1049/ip-d.1992.0021
  34. Rosanova, C. E., Lucchitta, B. K., and Ferrigno, J. G. (1998), Velocities of Thwaites Glacier and smaller glaciers along the Marie Byrd Land coast, West Antarctica, Annals of Glaciology, Vol. 27, pp. 47-53.
  35. Schmeltz, M., Rignot, E., and MacAyeal, D. (2002), Tidal flexure along ice-sheet margins: Comparison of InSAR with an elastic-plate model, Annals of Glaciology, Vol. 34, pp. 202-208. https://doi.org/10.3189/172756402781818049
  36. Shum, C. K., Woodworth, P. L., Andersen, O. B., Egbert, G. D., Francis, O., King, C., Klosko, S. M., Le Provost, C., Li, X., Molines, J-M, Parke, M. E., Ray, R. D., Schlax, M. G., Stammer, D., Tierney, C. C., Vincent, P., and Wunsch, C. I. (1997), Accuracy assessment of recent ocean tide models, Journal of Geophysical Research, Vol. 102, No. C11, pp. 25173-25194. https://doi.org/10.1029/97JC00445
  37. Shum, C. K., Yu, N., and Morris, C. S. (2001), Recent advances in ocean tidal science. J. Geod. Soc. Japan, Vol. 47, No. 1, pp. 528-537.
  38. Smith, A. J. E. (1999), Application of satellite altimetry for global ocean tide modeling, Ph.D. dissertation, Delft University press, Delft, The Netherlands, 182p.
  39. Smith, A. M. (1991), The use of tiltmeters to study the dynamics of Antarctic ice shelf grounding lines, Journal of Glaciology, Vol. 37, No. 125, pp. 51-58. https://doi.org/10.1017/S0022143000042799
  40. Thiel, E., Crary, A. P., Haubrich, R. A., and Behrendt, J. C. (1960), Gravimetric determination of ocean tide, Weddell and Ross Seas, Antarctica. Journal of Geophysical Research, Vol. 65, No. 2, pp. 629-636. https://doi.org/10.1029/JZ065i002p00629
  41. Wendt, A, Dietrich, R., Wendt, J., Fritsche, M., Lukin, V., Yuskevich, A., Kokhanov, A., Senatorov, A., Shibuya, K., and Doi, K. (2005), The response of the subglacial Lake Vostok, Antarctica, to tidal and atmospheric pressure forcing, Geophysical Journal International, Vol. 161, No. 1, pp. 41-49. https://doi.org/10.1111/j.1365-246X.2005.02575.x
  42. Werner, C. L., Wegmüller, U., Strozzi, T., and Wiesmann, A. (2000), GAMMA SAR and interferometry processing software, ERS/ENVISAT Symp., Gothenburg, Sweden, Oct. 16-20.
  43. Werner, C. L., Strozzil, T., Wiesmann, A., Wegmuller, U., Murray, T., Pritchard, H., and Luckman, A. (2001), Complimentary measurement of geophysical deformation using repeat-pass SAR, Geoscience and Remote Sensing Sysmposium, IGARSS 2001, pp. 3255-3258.
  44. Yi, Y., Matsumoto, K., Shum, C. K., Wang, Y., and Mautz, R. (2006), Advances in southern ocean tide modeling, Journal of Geodynamics, Vol. 41, pp. 128-132.