• Title/Summary/Keyword: Oblique flow

Search Result 162, Processing Time 0.025 seconds

A NUMERICAL STUDIES ON THE FLOW PROPERTIES OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JETS (축대칭 환형 분사식 이젝터 제트 유동 특성의 수치적 연구)

  • Park, G.H.;Kwon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.185-188
    • /
    • 2006
  • An investigation of the ejector-jets focusing on its flow properties was carried out by varying the geometric parameters. The area ratio of the primary nozzle, AR that was tested in the present measurement was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet, L/D had values of 3.41, 6.82, and 10.23. For the frame work of flow characteristics, the wall pressures distribution of ejector-jet was investigated by experiment for basic study of ejector-jet performance. In result, terminal shock location and existence of series of oblique shocks are recognized. In this study, CFD analysis was conducted at the same time. And as a result of comparison experiment data with CFD analysis, the physical phenomena of ejector-jets were estimated.

  • PDF

Numerical simulation of wave slamming on wedges and ship sections during water entry

  • Ma, Zhihua;Qian, Ling
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.183-199
    • /
    • 2018
  • The open source software OpenFOAM is utilised to simulate the water entry and hydrodynamic impact process of 2D wedges and ship hull sections. Incompressible multiphase flow solver interDyMFoam is employed to calculate the free fall of structure from air into water using dynamically deforming mesh technique. Both vertical and oblique entry of wedges of various dead-rise angles have been examined. A convergence study of dynamics as well as kinematics of the flow problem is carried out on successively refined meshes. Obtained results are presented and compared to the experimental measurements showing good agreement and reasonable mesh convergence of the solution.

The Interaction Between Modules Caused by Thermal Choking in a Supersonic Duct (덕트내 초음속 유동에서 열폐색에 의한 모듈 간의 간섭)

  • Kim, Jang-Woo;Koo, Kyung-Wan;Han, Chang-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.109-115
    • /
    • 2007
  • Airframe-integrated Scramjet engines of NASA Langley type consist of a compressor, a combustion chamber and a nozzle. When some disturbances occur in one module of the engine, its influences are propagated to other modules. In this study, it is investigated numerically how shock waves were caused by thermal choking in one module propagate upstream and how they influence adjacent modules. The calculations are carried out in 2-dimensional supersonic viscous flow model using explicit TVD scheme in generalized coordinates. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. This moving shock wave formed one module blocks the flow coming into the adjacent modules, which makes the modules unstarted.

Transitional Behavior of a Supersonic Flow in a Two-dimensional Diffuser

  • Kim, Sehoon;Kim, Hyungjun;Sejin Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1816-1821
    • /
    • 2001
  • Two-dimensional blow-down type supersonic wind tunnel was designed and built to investigate the transient behavior of the startup of a supersonic flow from rest. The contour of the divergent part of the nozzle was determined by the MOC calculation. The converging part of the nozzle, upstream of fille throat was contoured to make the flow uniform at the throat. The flow characteristics of the steady supersonic condition were visualized using the high-speed schlieren photography. The Mach number was evaluated from the oblique shock wave angle on a sharp wedge with halt angle of 5 degree. The measured Mach number was 2.4 and was slightly less than the value predicted by the design calculation. The initial transient behavior of the nozzle was recorded by a high-speed digital video camera with schlieren technique. The measured transition time from standstill to a steady supersonic flow was estimated by analyzing the serial images. Typical transition time was approximately 0.1sec.

  • PDF

Numerical Investigation of Ram Accelerator Flow Field in Expansion Tube (Expansion Tube 내의 램 가속기 유동장의 수치 연구)

  • 최정열;정인석;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.43-51
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the experiments performed to investigate the ram accelerator flow field by using the expansion tube facility in Stanford University. Navier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state assumption shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$+$O_2$+$17N_2$, it fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$+$O_2$+$12N_2$, mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. The experimental result is revealed to be an instantaneous result during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Numerical Analysis for Supersonic Off-Design Turbulent Jet Flow (초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구)

  • Kim Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.57-66
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit. The waves reflect repeatedly on the center axis and the sonic surface in the shear layer. The pressure difference is resolved across these reflected waves. In this paper, the axi-symmetric Navier-Stokes equation has been used with the κ-ε turbulence model. The second order TVD scheme with flux limiters, based on the flux vector split with the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

Estimation of Secondary Flow Pressure of an Annular-Injection-Type Supersonic Ejector Using Fabri Choking (패브리 초킹을 이용한 환형분사 초음속 이젝터의 부유동 압력 예측)

  • Kim Sehoon;Kwon Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • A theoretical analysis is developed for an annular-injection-type supersonic ejector having a second-throat downstream the ejector under the assumption that the Fabri choking is placed in mixing chamber. Non mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri choking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri choking plane. Physical constraint, which is that primary flow pressure and secondary flow pressure are same at Fabri choking plane, is added. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

A study on the prediction of cutting force in ball-end milling process (볼 엔드 밀에 의한 곡면가공의 절삭력 예측에 관한 연구)

  • 박희덕;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.433-442
    • /
    • 1989
  • Owing to the development of CNC machine tools and automatic programing software, the milling process with ball-end mill has become the most widely used process where three-dimensional precision machining is important. In this study, the ball-end milling process has been analyzed and a cutting force model has been developed to predict the cutting force acting on the ball-end mill on given machining conditions. The development of the model is based on the analysis of geometry of a ball-end mill an the oblique cutting process. The cutting edges of ball-end mills are considered as a series of infinitesimal elements and the geometry of the cutting edge element each cutting edge element is straight. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be predicted through the model. The predicted cutting forces has shown a fairly good agreement with the test results in various plane cutting conditions.

Properties of AlTiN Films Deposited by Cathodic Arc Deposition (음극 아크 증착으로 제조된 AlTiN 박막의 특성)

  • Yang, Ji-Hoon;Kim, Sung-Hwan;Song, Min-A;Jung, Jae-Hun;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • The properties of AlTiN films by a cathodic arc deposition process have been studied. Oblique angle deposition has been applied to deposit AlTiN films. AlTiN films have been deposited on stainless steel (SUS304) and cemented carbide (WC) at a substrate temperature of $500^{\circ}C$. AlTiN films were analyzed by scanning electron microscopy, glow-discharge light spectroscopy, micro-vickers hardness, and nanoindenter. When applying a current of 50 A to the cathodic arc source, it showed that the density of macroparticle of AlTiN films was 5 lower than other deposition conditions. With the increase of the bias voltage applied to the substrate up to -150 V, the density of macroparticle was decreased. The change of the $N_2$ flow rate during coating process made no influence on the film properties. For the multi-layered films, the film prepared at oblique angle of $60^{\circ}$ showed the highest hardness of 28 GPa and $H^3/E^2$ index of 0.18. AlTiN films have been shown a good oxidation resistance up to $800^{\circ}C$.

Studies on the Interrelationship between the Vestibular Semicircular Canals and the Extraocular Muscles in Rabbits and Cats (가토(家兎) 및 가묘(家猫)에 있어서 전정반규관(前庭半規管)과 외안근(外眼筋)의 상관성(相關性)에 관(關)한 연구(硏究))

  • Kim, Jeh-Hyub;Park, Byung-Rim;Park, Chul-Soon
    • The Korean Journal of Physiology
    • /
    • v.21 no.1
    • /
    • pp.91-101
    • /
    • 1987
  • The present experiment was carried out, in the rabbit and cat, in order to explore functional interrelationship between the vestibular semicircular canals and extraocular muscles, which are involved in the vestibulooculomotor reflex as the receptor and effector organ respectively. Semicircular canals were subjected to electrical stimulation, lymphatic fluid flow or acute freezing, and responses of the extraocular muscles were recorded in terms of changes in electromyographic activity and isometric tension. Electrical stimulation of a unilateral canal elicited contraction of the superio-medial muscle group (superior oblique, superior rectus and medial rectus muscles) in the ipsilateral eye and the inferio-lateral muscle group (inferior oblique, inferior rectus and lateral rectus muscles) in the contralateral eye. Thus a simple and distinct axiom was found in the pattern of the reflex-response of the extraocular muscles. Inhibition of the unilateral canals elicited the extraocular muscle responses contrary to those observed by excitation of the canal. Based on the present experimental results, it was demonstrated that the functional interrelations between the semicircular canals and extraocular muscles are rather equivalent in the frontal eyed cats (with binocular vision) and lateral eyed rabbits (with monocular vision). Therefore the previous thesis that the vestibuloocular relations vary from species to species awaits experimental reevaluation.

  • PDF