DOI QR코드

DOI QR Code

Properties of AlTiN Films Deposited by Cathodic Arc Deposition

음극 아크 증착으로 제조된 AlTiN 박막의 특성

  • Yang, Ji-Hoon (Materials Solution Research Group, Research Institute of Industrial Science & Technology) ;
  • Kim, Sung-Hwan (Materials Solution Research Group, Research Institute of Industrial Science & Technology) ;
  • Song, Min-A (Materials Solution Research Group, Research Institute of Industrial Science & Technology) ;
  • Jung, Jae-Hun (Materials Solution Research Group, Research Institute of Industrial Science & Technology) ;
  • Jeong, Jae-In (Materials Solution Research Group, Research Institute of Industrial Science & Technology)
  • 양지훈 (포항산업과학연구원 소재이용연구그룹) ;
  • 김성환 (포항산업과학연구원 소재이용연구그룹) ;
  • 송민아 (포항산업과학연구원 소재이용연구그룹) ;
  • 정재훈 (포항산업과학연구원 소재이용연구그룹) ;
  • 정재인 (포항산업과학연구원 소재이용연구그룹)
  • Received : 2016.06.24
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

The properties of AlTiN films by a cathodic arc deposition process have been studied. Oblique angle deposition has been applied to deposit AlTiN films. AlTiN films have been deposited on stainless steel (SUS304) and cemented carbide (WC) at a substrate temperature of $500^{\circ}C$. AlTiN films were analyzed by scanning electron microscopy, glow-discharge light spectroscopy, micro-vickers hardness, and nanoindenter. When applying a current of 50 A to the cathodic arc source, it showed that the density of macroparticle of AlTiN films was 5 lower than other deposition conditions. With the increase of the bias voltage applied to the substrate up to -150 V, the density of macroparticle was decreased. The change of the $N_2$ flow rate during coating process made no influence on the film properties. For the multi-layered films, the film prepared at oblique angle of $60^{\circ}$ showed the highest hardness of 28 GPa and $H^3/E^2$ index of 0.18. AlTiN films have been shown a good oxidation resistance up to $800^{\circ}C$.

Keywords

References

  1. S. Y. Yoon, Y. B. Lee, K. H. Kim, A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique, J. Kor. Inst. Surf. Eng., 35 (2002) 199-205.
  2. H. Y. Lim, J. K. Park, K. B. Kim, D. J. Choi, Y. J. Baik, Effect of TiAlN-based Nanoscale Multilayered Coating on the Cutting Performance of WC-Co Insert, J. Korean Vacuum Soc., 15 (2006) 110-116.
  3. G. J. Cho, S. C. Lee, A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers, J. Korean. Soc. Precis. Eng., 27 (2010) 54-61.
  4. J. H. Jung, J. H Yang, H. S. Park, M. A. Song, J. I. Jeong, Properties of TiN Films Fabricated by Oblique Angle Deposition, J. Kor. Inst. Surf. Eng., 45 (2012) 104-108.
  5. D. Arias, A. Devia, J. Velez, Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique, Surf. Coat. Technol., 204 (2010) 2999-3003. https://doi.org/10.1016/j.surfcoat.2010.03.033
  6. H. G. Kim, S. H. Ahn, J. H. Lee, J. G. Kim, J. G. Han, A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition, J. Kor. Inst. Surf. Eng., 36 (2003) 301-306.
  7. J. J. Steele, M. J. Brett, Nanostructure engineering in porous columnar thin films: recent advances, J. Mater. Sci.:Mater. Electron., 18 (2007) 367-379.
  8. K. M. A. Sobahan, Y. J. Park, J. J. Kim, Y. S. Shin, J. B. Kim and C. K. Hwangbo, Nanostructured optical thin films fabricated by oblique angle deposition, Adv. Nat. Sci., 1 (2010) 045005 (1-6).
  9. M. A. Song, J. H. Yang, J. H. Jung, S. H. Kim, J. I. Jeong, Mechanical Properties of TiAlSiN Films Coated by Hybrid Process, J. Kor. Inst. Surf. Eng., 47 (2014) 174-180. https://doi.org/10.5695/JKISE.2014.47.4.174
  10. H. S. Park, J. H. Yang, J. H. Jung, M. A. Song, J. I. Jeong, Characteristics of Al Films Prepared by Oblique Angle Deposition, J. Kor. Inst. Surf. Eng., 45 (2012) 109-114.
  11. S. H. Kim, Y. H. Jeong, H. C. Choe, Morphology change of HA films on highly ordered nanotubular Ti-Nb-Hf alloys as a function of electrochemical deposition cycle, Surf. Coat. Technol., 259 (2014) 281-289. https://doi.org/10.1016/j.surfcoat.2014.03.006
  12. S. Y. Chun, Effect of Target Bias Voltage on Gold Films Using Plasma Based Ion Implantation, J. Phys. Soc., 52 (2008) 1227-1230.
  13. P. S. Seo, S. Y. Chun, TiN Coatings by Reactive Magnetron Sputtering Under Various Substrate Bias Voltage, J. Kor. Inst. Surf. Eng., 41 (2008) 287-291. https://doi.org/10.5695/JKISE.2008.41.6.287
  14. A. Vladescu, V. Braic, M. Braic, M. Balaceanu, Arc plasma deposition of TiSiN/Ni nanoscale multilayered coatings, Mater. Chem. Phys., 138 (2013) 500-506. https://doi.org/10.1016/j.matchemphys.2012.12.010
  15. S. Y. Yoon, J. M. Yoo, S. Y. Yoon, K. H. Kim, Comparative study on impact behavior of TiN and TiAlN coating layer on WC-Co substrate using Arch Ion Plating Technique, J. Kor. Inst. Surf. Eng., 35 (2002) 408-414.
  16. T. Ikeda, H. Satoh, Phase Formation and Characterization of Hard Coatings in the Ti-Al-N System Prepared by the Cathodic Arc Ion Plating Method, Thin Soild Films, 195 (1991) 99-110. https://doi.org/10.1016/0040-6090(91)90262-V
  17. K. Dejun, G. Haoyuan, Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures, Tribology international, 88 (2015) 31-39. https://doi.org/10.1016/j.triboint.2015.03.009
  18. J. Todt, R. Pitonak, A. Kopf, R. Weissenbacher, B. Sartory, M. Burghammer, R. Daniel, T. Schoberl, J. Keckes, Superior oxidation resistance, mechanical properties and residual stresses of an Al-rich nanolamellar $Ti_{0.05}Al_{0.95}N$ coating prepared by CVD, Surf. Coat. Technol., 258 (2014) 1119-1127. https://doi.org/10.1016/j.surfcoat.2014.07.022
  19. L. Chen, J. Paulitsch, Y. Du, P. H. Mayrhofer, Thermal stability and oxidation resistance of Ti-Al-N coatings, Surf. Coat. Technol., 206 (2012) 2954-2960. https://doi.org/10.1016/j.surfcoat.2011.12.028