• 제목/요약/키워드: Object-based Image Classification

검색결과 248건 처리시간 0.028초

비전 트랜스포머 성능향상을 위한 이중 구조 셀프 어텐션 (A Dual-Structured Self-Attention for improving the Performance of Vision Transformers)

  • 이광엽;문환희;박태룡
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.251-257
    • /
    • 2023
  • 본 논문에서는 비전 트랜스포머의 셀프 어텐션이 갖는 지역적 특징 부족을 개선하는 이중 구조 셀프 어텐션 방법을 제안한다. 객체 분류, 객체 분할, 비디오 영상 인식에서 합성곱 신경망보다 연산 효율성이 높은 비전 트랜스포머는 상대적으로 지역적 특징 추출능력이 부족하다. 이 문제를 해결하기 위해 윈도우 또는 쉬프트 윈도우를 기반으로 하는 연구가 많이 이루어지고 있으나 이러한 방법은 여러 단계의 인코더를 사용하여 연산 복잡도의 증가로 셀프 어텐션 기반 트랜스포머의 장점이 약화 된다. 본 논문에서는 기존의 방법보다 locality inductive bias 향상을 위해 self-attention과 neighborhood network를 이용하여 이중 구조 셀프 어텐션을 제안한다. 지역적 컨텍스트 정보 추출을 위한 neighborhood network은 윈도우 구조보다 훨씬 단순한 연산 복잡도를 제공한다. 제안된 이중 구조 셀프 어텐션 트랜스포머와 기존의 트랜스포머의 성능 비교를 위해 CIFAR-10과 CIFAR-100을 학습 데이터를 사용하였으며 실험결과 Top-1 정확도에서 각각 0.63%과 1.57% 성능이 개선되었다.

Object Detection Based on Deep Learning Model for Two Stage Tracking with Pest Behavior Patterns in Soybean (Glycine max (L.) Merr.)

  • Yu-Hyeon Park;Junyong Song;Sang-Gyu Kim ;Tae-Hwan Jun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.89-89
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a representative food resource. To preserve the integrity of soybean, it is necessary to protect soybean yield and seed quality from threats of various pests and diseases. Riptortus pedestris is a well-known insect pest that causes the greatest loss of soybean yield in South Korea. This pest not only directly reduces yields but also causes disorders and diseases in plant growth. Unfortunately, no resistant soybean resources have been reported. Therefore, it is necessary to identify the distribution and movement of Riptortus pedestris at an early stage to reduce the damage caused by insect pests. Conventionally, the human eye has performed the diagnosis of agronomic traits related to pest outbreaks. However, due to human vision's subjectivity and impermanence, it is time-consuming, requires the assistance of specialists, and is labor-intensive. Therefore, the responses and behavior patterns of Riptortus pedestris to the scent of mixture R were visualized with a 3D model through the perspective of artificial intelligence. The movement patterns of Riptortus pedestris was analyzed by using time-series image data. In addition, classification was performed through visual analysis based on a deep learning model. In the object tracking, implemented using the YOLO series model, the path of the movement of pests shows a negative reaction to a mixture Rina video scene. As a result of 3D modeling using the x, y, and z-axis of the tracked objects, 80% of the subjects showed behavioral patterns consistent with the treatment of mixture R. In addition, these studies are being conducted in the soybean field and it will be possible to preserve the yield of soybeans through the application of a pest control platform to the early stage of soybeans.

  • PDF

Defect Diagnosis and Classification of Machine Parts Based on Deep Learning

  • Kim, Hyun-Tae;Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • 한국산업융합학회 논문집
    • /
    • 제25권2_1호
    • /
    • pp.177-184
    • /
    • 2022
  • The automatic defect sorting function of machinery parts is being introduced to the automation of the manufacturing process. In the final stage of automation of the manufacturing process, it is necessary to apply computer vision rather than human visual judgment to determine whether there is a defect. In this paper, we introduce a deep learning method to improve the classification performance of typical mechanical parts, such as welding parts, galvanized round plugs, and electro galvanized nuts, based on the results of experiments. In the case of poor welding, the method to further increase the depth of layer of the basic deep learning model was effective, and in the case of a circular plug, the surrounding data outside the defective target area affected it, so it could be solved through an appropriate pre-processing technique. Finally, in the case of a nut plated with zinc, since it receives data from multiple cameras due to its three-dimensional structure, it is greatly affected by lighting and has a problem in that it also affects the background image. To solve this problem, methods such as two-dimensional connectivity were applied in the object segmentation preprocessing process. Although the experiments suggested that the proposed methods are effective, most of the provided good/defective images data sets are relatively small, which may cause a learning balance problem of the deep learning model, so we plan to secure more data in the future.

통계적 극점 자취 알고리즘에 기초한 움직임 열화 영상의 파라메터 추출 (Estimation of Motion-Blur Parameters Based on a Stochastic Peak Trace Algorithm)

  • 최병철;홍훈섭;강문기
    • 방송공학회논문지
    • /
    • 제5권2호
    • /
    • pp.281-289
    • /
    • 2000
  • 영상을 획득하는 과정에 있어서 영상 획득 장치 또는 피사체의 흔들림은 영상에 손상을 가져온다. 이러한 손상을 움직임 열화(motion blur)라고 부르며, 영상의 선명도를 떨어뜨리는 주된 원인이 된다. 최근 연구에서 밝힌 극점자취 방법을 통해 주어진 열화영상에서 열화의 PSF(Point Spread Function) 특성을 구하는데 사용되는 중요한 파라메터를 추출 할 수 있다. 이러한 극점 자취방법으로, 노이즈에 의한 열화에 관계없이 적은 연산량으로 움직임 열화의 방향을 추출할 수 있다. 본 논문에서는 통계적 극점 자취 접근법을 새롭게 제안한다. 저주파 영역에서 움직임 열화방향의 추정오차를 줄이기 위해 ML(Maximum Likelihood)분류를 통해 오차를 유발하는 극점을 선택하여 가중치를 적용, 그 영향을 최소화한다. 선형 예측법을 사용하여, 불규칙적 자료가 극점으로 선택되는 것을 방지한다 제안된 MALM(Moving average least mean)방법은 두번째로 큰 극점의 검출을 위해 움직임의 정도를 판별하는데 사용된다. MALM방법은 자체적으로 노이즈 제거 과정을 내포하고 있으므로 노이즈가 많은 환경에서도 파라메터를 추출할 수가 있다. 실험에서 우리는 제안된 방법을 통해 얻어진 정보를 사용하여, 열화 된 이미지를 효율적으로 복구해 낼 수 있었다.

  • PDF

라이다 자료와 정사영상을 이용한 산림지역의 수목영역추출 (Extraction of the Tree Regions in Forest Areas Using LIDAR Data and Ortho-image)

  • 김의명
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.27-34
    • /
    • 2013
  • 지구온난화에 대한 관심이 증가함에 따라 온실가스를 저감할 수 있는 산림자원에 대한 관심도가 증가되고 있다. 이러한 산림자원에 대한 정보는 대부분 항공사진 또는 위성영상을 이용한 도화에 의해 구축되었다. 그러나 영상정보만을 이용한 경우 수목이 울창한 산림지역의 수고정보를 정확하게 구축하지 못하는 단점이 발생하였다. 이에 본 연구에서는 라이다 자료와 정사영상을 이용하여 산림지역에서 개별 수목을 분리하고 수고정보를 효율적으로 획득할 수 있는 자료처리 방법을 제안하였다. 라이다를 이용한 자료처리는 정규화된 수치표면모형을 생성한 후 국지적 최대값 필터링을 통하여 수목점을 추출하였다. 또한 정사영상을 이용한 자료처리는 수목영역을 추출하기 위하여 객체기반 영상분류법을 적용하였다. 그리고 라이다 및 정사영상의 결과를 조합하여 최종 수목점을 추출하였다. 용인지역에 대한 실험을 통하여 라이다 자료와 정사영상을 각각 이용하는 방법에 대한 장단점을 분석하고 두 자료를 융합하여 산림지역에서 개별 수목에 대한 정보를 획득할 수 있었다. 이를 통해 제안한 방법의 효율성을 검증할 수 있었다.

실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구 (Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring)

  • 최우철;나준엽
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.546-554
    • /
    • 2019
  • 본 논문에서는 CCTV를 통해 실시간 범죄에 대응할 수 있도록 CCTV 카메라 간 협업이 가능한 기술과 이를 활용한 실시간 범죄대응 서비스에 대해 연구하였다. 본 연구에서 개발하고자 하는 CCTV 협업 기술은 한 곳의 CCTV에서 추출된 이동 객체(용의자)가 범위를 벗어나 다른 CCTV로 이동했을 때 객체의 유사도 정보를 관제자에게 전달하여 선택된 객체를 추적하는 프로그램 모델이다. 일련의 유사도 정보 획득 과정은 객체 감지(object detection), 사전 분류(pre-classification), 특징 추출(feature extraction), 분류(classification)의 4단계의 프로세스로 진행된다. 이는 주로 사후처리용으로 사용되던 CCTV 모니터링을 긴박한 실시간 범죄에 대응하도록 개선시켜 범죄발생 초기대응 체계를 강화 할 수 있다. 또한 관제요원의 모니터링에만 의존하는 CCTV 관제시스템을 부분 자동화하여 지자체 관제센터 운영효율성을 증대시킬 수 있다. 해당 기술 및 서비스는 안양시 테스트베드에 구축하여 시범운영할 예정으로, 서비스가 안정화가 되면 전국 지자체에 확산하여 상용화가 될 것으로 예상된다. 향후 CCTV 협업 뿐 아니라 실시간 개인 정밀위치결정, 스마트폰 연계 등 통합 방범서비스 연구가 진행되어 시민들이 보다 안전한 생활을 영위할 수 있기를 기대한다.

Construction of Retrieval-Based Medical Database

  • Shin Yong-Won;Koo Bong-Oh;Park Byung-Rae
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.485-493
    • /
    • 2004
  • In the current field of Medical Informatics, the information increases, and changes fast, so we can access the various data types which are ranged from text to image type. A small number of technician digitizes these data to establish database, but it is needed a lot of money and time. Therefore digitization by many end-users confronting data and establishment of searching database is needed to manage increasing information effectively. New data and information are taken fast to provide the quality of care, diagnosis which is the basic work in the medicine. And also It is needed the medical database for purpose of private study and novice education, which is tool to make various data become knowledge. However, current medical database is used and developed only for the purpose of hospital work management. In this study, using text input, file import and object images are digitized to establish database by people who are worked at the medicine field but can not expertise to program. Data are hierarchically constructed and then knowledge is established using a tree type database establishment method. Consequently, we can get data fast and exactly through search, apply it to study as subject-oriented classification, apply it to diagnosis as time-depended reflection of data, and apply it to education and precaution through function of publishing questions and reusability of data.

  • PDF

매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색 (Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage)

  • 권문희;김승섭
    • 자원환경지질
    • /
    • 제55권5호
    • /
    • pp.551-561
    • /
    • 2022
  • 지구물리탐사기법은 매장 문화재 조사에 필요한 높은 해상도의 지하 구조 영상 생성과 매장 유구의 정확한 위치 결정하는 데 매우 유용하다. 이 연구에서는 경주 신라왕경 중심방의 고해상도 지하투과레이더 영상에서 유구의 규칙적인 배열이나 선형 구조를 자동적으로 구분하기 위하여 영상처리 기법인 영상 특징 추출과 영상분할 기법을 적용하였다. 영상 특징 추출의 대상은 유구의 원형 적심과 선형의 도로 및 담장으로 캐니 윤곽선 검출(Canny edge detection)과 허프 변환(Hough Transform) 알고리듬을 적용하였다. 캐니 윤곽선 검출 알고리듬으로 검출된 윤곽선 이미지에 허프 변환을 적용하여 유구의 위치를 탐사 영상에서 자동 결정하고자 하였으나, 탐사 지역별로 매개변수를 달리해서 적용해야 한다는 제약이 있었다. 영상 분할 기법의 경우 연결요소 분석 알고리듬과 QGIS에서 제공하는 Orfeo Toolbox (OTB)를 이용한 객체기반 영상분석을 적용하였다. 연결 요소 분석 결과에서, 유구에 의한 신호들이 연결된 요소들로 효과적으로 인식되었지만 하나의 유구가 여러 요소로 분할되어 인식되는 경우도 발생함을 확인하였다. 객체기반 영상분석에서는 평균이동(Large-Scale Mean-Shift, LSMS) 영상 분할을 적용하여 각 분할 영역에 대한 화소 정보가 포함된 벡터 레이어를 우선 생성하였고, 유구를 포함하는 영역과 포함하지 않는 영역을 선별하여 훈련 모델을 생성하였다. 이 훈련모델에 기반한 랜덤포레스트 분류기를 이용해 LSMS 영상분할 벡터 레이어에서 유구를 포함하는 영역과 그렇지 않은 영역이 자동 분류 될 수 있음을 확인하였다. 이러한 자동 분류방법을 매장 문화재 지하투과레이더 영상에 적용한다면 유구 발굴 계획에 활용가능한 일관성 있는 결과를 얻을 것으로 기대한다.

항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류 (Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images)

  • 이진덕;방건준;김현호
    • 한국지리정보학회지
    • /
    • 제21권1호
    • /
    • pp.35-45
    • /
    • 2018
  • 항공기 탑재용 초분광 카메라시스템에 의해 얻어진 영상데이터는 수십 내지 수백의 연속된 초분광 해상도로부터 동시에 각 화소별 완전한 분광 및 공간정보를 포함하고 있으므로 복잡한 연안지역에 대한 해안선 매핑, 특정재료로 이루어진 시설물 탐지, 연안지역의 토지이용 상세분석 및 변화 모니터링 등에 그 활용잠재성이 대단히 크다. 육역과 해역을 포함하는 연안지역을 대상으로 항공기 탑재 초분광센서인 CASI-1500으로부터 취득된 초분광 항공영상을 이용하여 분광각매퍼(SAM;Spectral Angle Mapper) 감독분류방법으로 토지피복분류를 행하였다. 첫번째, 대기보정영상에 대하여 육역과 해역이 포함된 지역에 대한 통합분류, 두번째, 육 해역의 통합분류결과로부터 육역과 해역의 분리 후 재분류, 그리고 세번째로 육역만을 대상으로 한 분류를 각각 수행하여 결과 및 정확도를 비교하였다. 또한 초분광 항공영상 48개 밴드로부터 IKONOS, QuickBird, KOMPSAT, GeoEye 등 고해상도 위성영상과 동일한 파장대의 4개 밴드영상, 그리고 WorldView-2 위성영상과 동일한 파장대의 8개 밴드영상만을 선택하여 각각 토지피복분류를 수행하고 초분광 48개 밴드영상으로 분류한 결과와 비교하였다. 연구결과, 연안지역에 대한 육역과 해역 통합영상으로 분류하는 것에 비해 육역과 해역 통합영상으로 분류한 후 육역과 해역을 분리하여 재분류를 수행하는 것이 효과적인 것으로 나타났다. 육역의 분류 결과에서 분광해상도가 높은 영상의 결과일수록 아스팔트나 콘크리트 도로가 더 정확하게 분류되었다.

공간패턴을 이용한 자동 비닐하우스 추출방법 (Automated Vinyl Green House Identification Method Using Spatial Pattern in High Spatial Resolution Imagery)

  • 이종열;김병선
    • 대한원격탐사학회지
    • /
    • 제24권2호
    • /
    • pp.117-124
    • /
    • 2008
  • 지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패틴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과 연구대상지역내의 비닐하우스가 매우 정확하게 적출되었다.