DOI QR코드

DOI QR Code

Extraction of the Tree Regions in Forest Areas Using LIDAR Data and Ortho-image

라이다 자료와 정사영상을 이용한 산림지역의 수목영역추출

  • Received : 2013.02.18
  • Accepted : 2013.04.25
  • Published : 2013.06.30

Abstract

Due to the increased interest in global warming, interest in forest resources aimed towards reducing greenhouse gases have subsequently increased. Thus far, data related to forest resources have been obtained, through the employment of aerial photographs or satellite images, by means of plotting. However, the use of imaging data is disadvantageous; merely, due to the fact that recorded measurements such as the height of trees, in dense forest areas, lack accuracy. Within such context, the authors of this study have presented a method of data processing in which an individual tree is isolated within forested areas through the use of LIDAR data and ortho-images. Such isolation resulted in the provision of more efficient and accurate data in regards to the height of trees. As for the data processing of LIDAR, the authors have generated a normalized digital surface model to extract tree points via local maxima filtering, and have additionally, with motives to extract forest areas, applied object oriented image classifications to the processing of data using ortho-images. The final tree point was then given a figure derived from the combination of LIDAR and ortho-images results. Based from an experiment conducted in the Yongin area, the authors have analyzed the merits and demerits of methods that either employ LIDAR data or ortho-images and have thereby obtained information of individual trees within forested areas by combining the two data; thus verifying the efficiency of the above presented method.

지구온난화에 대한 관심이 증가함에 따라 온실가스를 저감할 수 있는 산림자원에 대한 관심도가 증가되고 있다. 이러한 산림자원에 대한 정보는 대부분 항공사진 또는 위성영상을 이용한 도화에 의해 구축되었다. 그러나 영상정보만을 이용한 경우 수목이 울창한 산림지역의 수고정보를 정확하게 구축하지 못하는 단점이 발생하였다. 이에 본 연구에서는 라이다 자료와 정사영상을 이용하여 산림지역에서 개별 수목을 분리하고 수고정보를 효율적으로 획득할 수 있는 자료처리 방법을 제안하였다. 라이다를 이용한 자료처리는 정규화된 수치표면모형을 생성한 후 국지적 최대값 필터링을 통하여 수목점을 추출하였다. 또한 정사영상을 이용한 자료처리는 수목영역을 추출하기 위하여 객체기반 영상분류법을 적용하였다. 그리고 라이다 및 정사영상의 결과를 조합하여 최종 수목점을 추출하였다. 용인지역에 대한 실험을 통하여 라이다 자료와 정사영상을 각각 이용하는 방법에 대한 장단점을 분석하고 두 자료를 융합하여 산림지역에서 개별 수목에 대한 정보를 획득할 수 있었다. 이를 통해 제안한 방법의 효율성을 검증할 수 있었다.

Keywords

References

  1. Chang, A., Kim, H., 2008, Study of biomass estimation in forest by aerial photograph and LiDAR data, Journal of the Korean Association of Geographic Information Studies, Vol. 11, No. 3, pp.166-173.
  2. Chepkochei, L., 2011, Object-oriented image classification of individual trees using ERDAS Imagine Objective: case study of Wanjohi area, Lake Naivasha basin, Kenya, Procedings of Kenya Geothermal Conference.
  3. Cho, D., Kim, E., 2010, Extraction of spatial information of tree using LIDAR data in urban area, Journal of The Korean Society for Geospatial Information System, Vol. 18, No. 4, pp.11-20.
  4. Cho, M., Mathieu, R., Asner, G., Naidoo, L., Aardt., J., Ramoelo, A., Debba, P., Wessels, K., Main, R., Smit, I., Erasmus, B., 2012, Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system, Remote Sensing of Environment, Vol. 125, pp.214-226. https://doi.org/10.1016/j.rse.2012.07.010
  5. Demir, N., Poli, D., Baltsavias, E., 2008, Extraction of buildings and trees using image and LiDAR data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IAPRS, Vol. XXXVII, Part B4, pp.313-318.
  6. Kao, D. L., Kramer, M. G., Love, A. L., Dungan, J. L., Pang, A. T., 2005, Visualizing distributions from multi-return Lidar data to understand forest structure, Cartographic Journal, vol. 42, no. 1, pp.35-47. https://doi.org/10.1179/000870405X57257
  7. Kim, E., 2009, Building boundary extraction of airborne LIDAR data by image-based and point-based data analysis, Journal of The Korean Society for Geospatial Information System, Vol. 17, No. 1, pp. 43-52.
  8. Kim, E., Cho, D., 2011, Extraction of the Street Trees Information Using LIDAR Data, 2011 Joint Conference of The Korean Society of Cadastre and The Korean Cadastre Information Association, pp. 155-167.
  9. Kim. H., Kim, H., Cho, S., Kang, H., Lee, S., 2012, GIS․RS-based estimation of carbon dioxide absorption and bioenergy supply potential of forest - focused on Muju county, Jeonbuk, Journal of Agriculture and Life Science, Vol. 45, No. 1, pp.21-32.
  10. Kwak, D., Lee, W., Son, M., 2005, Application of LiDAR for measuring individual trees and forest stands, Journal of Korean Forest Society, Vol. 94, No. 6, pp.431-440.
  11. Pascual, C., Garcia-Abril, A., Garcia-Montero, L. G., Martin-Fernandez, S., Bohen, W.B., 2008, Objectbased Semi-automatic Approach for Forest Structure Characterization Using Lidar Data in Heterogeneous Pinus Sylvestris Stands, Forest Ecology and Management, vol. 255, no. 11, pp.3677-3685. https://doi.org/10.1016/j.foreco.2008.02.055
  12. Taguchi, H., Endo, T., Setojima, M., Yasuoka, Y., 2006, A New Method for Individual Tree Detection Using Airborne LiDAR Pulse Data, Proc. Asian Conference on Remote Sensing, P-1, p.19.
  13. Yeu, B., Schenk, T., 2001, Modern digital photogrammetry, Munundang.
  14. Yoon, J., Lee, K., Shin, J., 2006, Characteristics of airborne Lidar data and ground points separation in forested area, Korean Journal of Remote Sensing, Vol. 22, No. 6, pp.533-542.

Cited by

  1. Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei vol.7, pp.12, 2016, https://doi.org/10.3390/f7110259
  2. Protective Tree Management Technique using LiDAR 3D Scan Data vol.18, pp.9, 2013, https://doi.org/10.14801/jkiit.2020.18.9.99