• Title/Summary/Keyword: ORL images

Search Result 24, Processing Time 0.024 seconds

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

A Study on Face Recognition Based on Modified Otsu's Binarization and Hu Moment (변형 Otsu 이진화와 Hu 모멘트에 기반한 얼굴 인식에 관한 연구)

  • 이형지;정재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1140-1151
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu's binarization and Hu moment. Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. As the proposed modified Otsu's binarization computes other thresholds from conventional Otsu's binarization, namely we create two binary images, we can extract higher dimensional feature vector. Here the feature vector has properties of robustness to brightness and contrast changes because the proposed method is based on Otsu's binarization. And our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. In the perspective of brightness, contrast, scale, rotation, and translation changes, experimental results with Olivetti Research Laboratory (ORL) database and the AR database showed that average recognition rates of conventional well-known principal component analysis (PCA) are 93.2% and 81.4%, respectively. Meanwhile, the proposed method for the same databases has superior performance of the average recognition rates of 93.2% and 81.4%, respectively.

Face Recognition using Contourlet Transform and PCA (Contourlet 변환 및 PCA에 의한 얼굴인식)

  • Song, Chang-Kyu;Kwon, Seok-Young;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.403-409
    • /
    • 2007
  • Contourlet transform is an extention of the wavelet transform in two dimensions using the multiscale and directional fillet banks. The contourlet transform has the advantages of multiscale and time-frequency-localization properties of wavelets, but also provides a high degree of directionality. In this paper, we propose a face recognition system based on fusion methods using contourlet transform and PCA. After decomposing a face image into directional subband images by contourlet, features are obtained in each subband by PCA. Finally, face recognition is performed by fusion technique that effectively combines similarities calculated respectively In each local subband. To show the effectiveness of the proposed method, we performed experiments for ORL and CBNU dataset, and then we obtained better recognition performance in comparison with the results produced by conventional methods.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

Efficient Face Recognition using Low-Dimensional PCA: Hierarchical Image & Parallel Processing

  • Song, Young-Jun;Kim, Young-Gil;Kim, Kwan-Dong;Kim, Nam;Ahn, Jae-Hyeong
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2007
  • This paper proposes a technique for principal component analysis (PCA) to raise the recognition rate of a front face in a low dimension by hierarchical image and parallel processing structure. The conventional PCA shows a recognition rate of less than 50% in a low dimension (dimensions 1 to 6) when used for facial recognition. In this paper, a face is formed as images of 3 fixed-size levels: the 1st being a region around the nose, the 2nd level a region including the eyes, nose, and mouth, and the 3rd level image is the whole face. PCA of the 3-level images is treated by parallel processing structure, and finally their similarities are combined for high recognition rate in a low dimension. The proposed method under went experimental feasibility study with ORL face database for evaluation of the face recognition function. The experimental demonstration has been done by PCA and the proposed method according to each level. The proposed method showed high recognition of over 50% from dimensions 1 to 6.

Facial Feature Extraction Based on Private Energy Map in DCT Domain

  • Kim, Ki-Hyun;Chung, Yun-Su;Yoo, Jang-Hee;Ro, Yong-Man
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.243-245
    • /
    • 2007
  • This letter presents a new feature extraction method based on the private energy map (PEM) technique to utilize the energy characteristics of a facial image. Compared with a non-facial image, a facial image shows large energy congestion in special regions of discrete cosine transform (DCT) coefficients. The PEM is generated by energy probability of the DCT coefficients of facial images. In experiments, higher face recognition performance figures of 100% for the ORL database and 98.8% for the ETRI database have been achieved.

  • PDF

Improvement of Face Recognition Rate by Preprocessing Based on Elliptical Model (타원 모델기반의 전처리 기법에 의한 얼굴 인식률 개선)

  • Won, Chul-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2008
  • Image calibration at preprocessing step is very important for face recognition rate improvement, and background noise deletion affects accuracy of face recognition specially. In this paper, a method is proposed to remove background area utilizing elliptical model at preprocessing step for face recognition rate improvement. As human face has the shape of ellipse, a face contour can be easily detected by using the elliptical model in face images.

  • PDF

Face recognition invariant to partial occlusions

  • Aisha, Azeem;Muhammad, Sharif;Hussain, Shah Jamal;Mudassar, Raza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2496-2511
    • /
    • 2014
  • Face recognition is considered a complex biometrics in the field of image processing mainly due to the constraints imposed by variation in the appearance of facial images. These variations in appearance are affected by differences in expressions and/or occlusions (sunglasses, scarf etc.). This paper discusses incremental Kernel Fisher Discriminate Analysis on sub-classes for dealing with partial occlusions and variant expressions. This framework focuses on the division of classes into fixed size sub-classes for effective feature extraction. For this purpose, it modifies the traditional Linear Discriminant Analysis into incremental approach in the kernel space. Experiments are performed on AR, ORL, Yale B and MIT-CBCL face databases. The results show a significant improvement in face recognition.

Study On the Robustness Of Four Different Face Authentication Methods Under Illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 연구)

  • 고대영;천영하;김진영;이주헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2036-2039
    • /
    • 2003
  • This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

  • PDF

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF