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Abstract 
 

Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D 
image to solve the small sample size (SSS) problems which locality preserving projections 
(LPP) meets. It’s able to find the low dimension manifold mapping that not only preserves 
local information but also detects manifold embedded in original data spaces. However, 2D-
LPP is simple and elegant. So, inspired by the comparison experiments between two 
dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) 
which indicated that matrix based methods don’t always perform better even when training 
samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and 
propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-
MELPP is equivalent to employing distance diffusion mapping to transform original images 
into a new space, and margins between labels are broadened, which is beneficial for solving 
classification problems. Nonetheless, the computational time complexity of 2D-MELPP is 
extremely high. In this paper, we replace some of matrix multiplications with multiple 
multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. 
We test it on public databases: random 3D data set, ORL, AR face database and Polyu 
Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D 
methods like LPP and exponential locality preserving projections (ELPP), finding it 
outperforms than others in recognition accuracy. We also compare different dimensions of 
projection vector and record the cost time on  the ORL, AR face database and Polyu Palmprint 
database. The experiment results above proves that our advanced algorithm has a better 
performance on 3 independent public databases. 
 
 

Keywords: Feature extraction, Discriminant analysis, Matrix exponential, Small sample 
size (SSS) problems, Two dimensional locality preserving projections (2D-LPP)  
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1. Introduction 

In pattern recognition, massive high dimensional image inputs are computationally 
challenging to analysis[1-6]. We hope to retain as much information as possible while reducing 
data dimensions to improve the accuracy and efficiency of later processing such as inference 
[7-10]. Generally, dimensionality reduction methods can be classified into two classes: feature 
extraction and feature selection. The former is focused on creating new features and the later 
is focused on selecting most relevant subsets. And there are two feature extractions 
classifications: (1)Nonlinear methods and (2)Linear methods. Nonlinear ones like locality 
linear embedding(LLE)[11], Laplacian egienmaps(LE)[12] pay attention to preserving local 
structure, while other methods like Isomap[13] is focused on global structure. It also tries to 
maintain geodesic distances between different samples. Linear methods, on the other hand, has 
become extremely important for its simple and computationally efficient classification strategies. 
Principal component analysis(PCA)[14-15] as unsupervised method and linear discriminant 
analysis(LDA)[16-17] as supervised method are two representative linear methos 
dimensionality reduction. locality preserving projections(LPP)[18], which can be seen as 
linearization of LE, is an alternative to PCA. LPP is obtained during the process of searching 
for the optimized approximate value of eigenfunctions of Laplace Beltrami operator on the 
manifold when there is a low dimensional manifold embedded in relatively high dimensional 
spaces. It needs to point out that LPP possesses two non linear advantages while former linear 
algorithms don’t: 

1.New minimal criterion preserves neighborhood structure, considering that Euclidean 
distances are meaningful only when they are local. It makes sense particularly when data lies on 
nonlinear manifold embedded in the ambient space.  

2.For the ‘neighborhood structure preserved’ advantage above, LPP is also suitable for 
information retrieval applications 

It is also very important that LPP is defined on more than just training data points and thus can 
be simply applied to new data points compared with traditional non-linear methods. 

Two dimensional principal component analysis(2D-PCA)[19] saves the trouble of 
transforming images into one dimensional vectors and it inspires subsequent matrix based 
algorithm. And two dimensional linear discriminant(2D-LDA)[20] analysis extracts proper 
features directly from images based on Fisher’s linear discriminant analysis. In the process 
especially like image recognition, the data is usually insufficient and having high dimensions 
causing singularity problems which make algorithms (e.x. LPP) unable to be applied directly. 
Two dimensional locality preserving projections (2D-LPP) is therefore proposed. It works on 
2D images directly. Two dimensional locality preserving projections(2D-LPP)[21-23]perfectly 
solves the singularity that traditional LPP faced and is proved to perform better on face 
recognition and palmprint recognition , it turns out to be faster than LPP and achieves higher 
recognition rates. 

Matrix based exponential method is also used to solve such small sample sized problem (SSS 
problems). ELDE[24] is based on local discriminant embedding (LDE)[25], which was put 
forward to overcome the limits that global linear discriminant analysis method meets. Matrix 
based exponential method also helps to improve the flaw of LPP’s sensitivity to neighborhood 
sized k[26] and fix singularity problems.  

According to[27], 2D methods don’t necessarily perform better than 1D methods. It implies 
the limitations that 2D method meets and the direction for feature work. 2D-LPP is simple and 
efficient, but it don’t perform well when training samples are limited and it seems to meet 
limitations in some public databases. We apply matrix exponential methods on 2D-LPP to 
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improve its behavior and we get its enhanced version--2D-MELPP. However, the computational 
complexity of 2D-MELPP is extremely high, so we replace some of matrix multiplications with 
multiple multiplications to get a more efficient way for solving 2D-MELPP. We also use a more 
efficient way to calculate matrix exponential to save time. The new 2D-MELPP has high 
memory costs, so we replace some matrix multiplications with multiple multiplications and we 
investigate the enhanced version on a random 3D data set, ORL, AR Face Database and Polyu 
Palprint Database, 2D-PCA,2D-LDA and 2D-LPP are also tested. 

The remainder of paper is arranged as follows:  The mainly content is about reference to 
related works in Section 2. Section 3 is the retrospect of innovative work in this paper. Section 
4 is composed of 4 experiments designed to show the efficiency and accuracy of our new 
algorithm. Section 5 is separated into two parts, respectively describing conclusions of 
experiments in section 4 and the direction of our feature work. 

2. Related Work 
Our work is based on 2D-LPP and matrix exponential methods, which both help to solve SSS 
problems and improve recognition accuracy. 

2.1 2D-LPP method 
2D-LPP applies the projection for each data as follows: 

 ( 1,2,3... )i ix Aw i n= =  (1) 

 r d r c c l
x R A R w Ri

× × ×
∈ ∈ ∈  

where r ,c are row and column dimension of iA  respectively. w is the target projection matrix 
a, while iA  is the ith source image for testing, and n is the number of images in the datasets. 

It chooses[21] the criterion as： 

 2

,
min || || ( , 1,2,3...)ij i j

i j
S X X i j− =∑  (2) 

 is generated as： ijS  

(1). First, we have to construct adjacency matrix ×∈ m nG R . For every ijG both k-nearest 
neighbors and ε - nearest neighbors are appropriate. When doing the experiment in this paper, 
we choose the former and add label Information; 
(2). For each ijG  not equal to zero, we suppose ith and jth image are “close” ; 

(3). For all “close” ones, we apply the Heat Kernel method to build the S  matrix. 
 
Looking back to the origin criterion, it can be written as: 

 2

,
min || || ( , 1,2,3...)i j

i j
Aw A w i j− =∑  (3) 



2994                                                                     Xiong et al.: 2D-MELPP: A two dimensional matrix exponential based  
extension of locality preserving projections for dimensional reduction 

 
where the target function can be simplified[23] as  

 min ( )T T
nw A L I Aw⊗  (4) 

where A is in the form like  1 2[ , ... ]T T T T
nA A A , iiD  is column sum of S, nI  is a n n×  identity 

matrix and ⊗  is kronecker product. 
To eliminate an arbitrary scaling element of the process, 2D-LPP dispose it as followed :  

 1T
ij i i

i
D X X =∑    (5) 

which can also be presented as:  

 ( ) 1T T
nw A D I Aw⊗ =  (6) 

 
And the whole minimization problem is transformed into a classical generalized eigenvalue 
problem as follows:  

 ( ) ( )T T
n nA L I Aw A D I Awλ⊗ = ⊗  (7) 

So we can get final target projection matrix w. 
 

2.2. Matrix exponential Process 

In the sub-section, we will briefly look into the definition and some basic properties of matrix 
exponential process for the prerequisite of 2D-MELPP: 

The Matrix exponential  for M( m nM R ×∈ ) is defined as follows:  

 = + + + + +
2

exp( ) 1 ... ...
2! !

mM MM M
m

 (8) 

where 1 can be treated as an n n×  identity matrix, the matrix exponential has properties as 
followed: 
(1). exp( )M is the sum of a sequence of matrixes with finite numbers; 
(2). exp( )M  is a full rank matrix; 

(3). For arbitrary square matrix M , there exists the inverse of its matrix exponential; 
(4). Supposing that R is a nonsingular matrix, we can have: 

 − −=1 1exp( ) exp( )R MR R M R  
(5) . For every eigenvectors of 1 2( , ... )nM v v v corresponding to α α α1 2, ..., n there exists 

α α α1 2, ..., ne e e  as eigenvalues of exp(M) having the same eigenvectors just like M. 
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3. 2D-Matrix exponential based discriminate locality preserving 
projection（2D-MELPP） 

3.1. Notation used in 2D-MELPP  
Notation Meaning 

W  0-1 affinity (weight) matrices 
D  Column sum of W  
L  Laplacian matrix, where = −L D W  
A  Image set matrix 

w  Projection matrix 
λ  Eigen value corresponding to w  

exp()  Matrix exponential function 

⊗  kronecker product 
P  P comes from SVD of A, where = Σ TA P V  

nI  nI  is the n by n identity matrix 

H  Where = ⊗ nH D I  

HM  = Σ0.5T
H H HM A Q ,where Σ0.5

H comes form 

eigen-decomposition of H  
τ
MQ  τ

MQ  is column orthogonal matrix 

L  Where = ⊗ nL L I  

LX  = Σ0.5T
L L LX V Q  where Σ0.5

L comes form eigen-

decomposition of L  
τ

MP  τ
MP  is column orthogonal matrix 

 
 

3.2. 2D-MELPP without further improvements 
In 2D-MELPP, the objective function is: 

 ⊗min exp( )T T
nw A L I Aw  (9) 

To eliminate an arbitrary scaling element of the process, 2D-LPP dispose it as followed : 

 ⊗ =exp( ) 1T T
nw A D I Aw  (10) 

With Matrix based exponential D L⊗ operator included accordingly. 
Then the whole optimal question is equal to the eigenvalue problem as follows：  

 λ⊗ = ⊗exp( ( ) ) exp( ( ) )T T
n nA L I A w A D I A w  (11) 

Referring to the properties (5) in section B, it is mathematically similar and can solve SSS 
problem in classical eigenvalue questions for (4) in section B. 
According to[26], it can also emphasize the geometry features by the same time. 
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3.3. Efficient procedure to solve 2D-MELPP 

The computational complexities of 2D-MELPP is computed ⊗exp( ( ) )T
nA L I A and  3( )O r

respectively. A paper[28] meets the same problem as working with one dimension framework 
as follows:   

 −= 1arg min( exp( ) ) ( exp( ) )T T T Tw w XDX w w XLX w  (12) 
To solve this, we can apply the similar strategy. 
As what it’s shown in the part followed, an efficient procedure formula is build to solve 2D-
MELPP. 
First, we assume the SVD decomposition of A is   
 

 = Σ TA P V  (13) 
Let = ⊗exp( ( ) )T T

a mS P A L I A P , = ⊗exp( ( ) )T T
b mS P A D I A P , suppose that the 

eigenvector is u and λ  is the eigenvalue.  
Then we obtain:   

 λ⊗ = ⊗exp( ( ) ) exp( ( ) )T T
n nA D I A Pu A L I A Pu  (14) 

According to (4) the computational complexity is reduced. However, the computational 
complexity of computing ⊗exp( ( ) )nA D I A and ⊗exp( ( ) )T

nA L I A is still 3( )O d . Then, 

out target has changed into compute ⊗exp( ( ) )T
nA D I A and ⊗exp( ( ) )T

nA L I A
efficiently. 

The eigen-decomposition of = ⊗ nH D I  is supposed :  

 = Σ T
H H HH Q Q  (15) 

Let = Σ0.5T
H H HM A Q ,and its economic decomposition is  

 = Σ T
H M M MM Q V  (16) 

Then we obtain:  

 = Σ2T T
M M MA HA Q Q  (17) 

Let column orthogonal matrix τ
MQ be that  τ[ , ]M MQ Q is orthogonal. 

According to the definition, we can have that:

 

 

 
τ τ= +exp( ) [ , ][ , ] ...T T

M M M MA HA Q Q Q Q
 

(18) 
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τ

× −

− × − × −

 Σ 
 
 
 
 
 
  + +

2
( )

( ) ( ) ( )

[ , ]

...
!

M M

M M M M

M r r r

M M
r r r r r r r

O

Q Q
O O

m
 

 τ= Σ + −exp( ) 1T T
M M M M MQ Q Q Q  

where ×c dQ  are zeros matrices, c,d are its row and column numbers respectively. And Mr is the 
dimension of ΣM . 

Then, we have: 

 = Σ + −2exp( ) exp( )T T T T T T
H M M MP A HA P P Q P I P Q Q P  (19) 

 
Similarly, the eigen-decomposition of  = ⊗ nL L I is assumed:  

 = Σ T
L L LL Q Q  (20) 

Let = Σ0.5T
L L LX V Q , and its economic decomposition is:  

 = Σ T
L X X XX Q V  (21) 

Then we obtain: 

 = Σ2T T T
X X XA LA PQ Q P  (22) 

Let column orthogonal matrix τ
MP be that τ[ , ]X XPQ P  is orthogonal. Then we have: 

 

τ τ= +exp( ) [ , ][ , ]T T
X X X XA LA PQ PQ PQ PQ  

 

τ

× −

− × − × −

 Σ 
 
 
 
 
 
  +

2
( )

( ) ( ) ( )

[ , ]

...
!

x x

x x x x

m
M r d r

X X
r r r r r r r

O

PQ PQ
O O

m
 

 τ τ= Σ +2exp( ) ( )T T T
X X X X XPQ Q P P P

 
(23) 

Then we have: 

 = Σ + −2exp( ) exp( )T T T T
X X X X XP A LA P Q Q I Q Q  (24) 



2998                                                                     Xiong et al.: 2D-MELPP: A two dimensional matrix exponential based  
extension of locality preserving projections for dimensional reduction 

Now we have the following new process to solve 2D-MELPP: 
 
Algorithm :2D-MELPP 
Input: sample A 
Output: The projected matrix of  G 

(1). Constructing the matrix A , = exp( )TH A DA , = exp( )TL A LA  just like normal 2D-
LPP; 

(2). Calculating the SVD of A as = Σ TA P V and the matrix H as = Σ T
H H HH Q Q ; 

(3). Compute the matrix = Σ0.5T
H H HM A Q  and its economic SVD as = Σ T

H M M MM Q V ; 

(4). Compute the eigen-decomposition of L as = Σ T
L L LL Q Q ; 

(5). Calculate the matrices = Σ0.5T
L L LX V Q ,and its economic decomposition is

= Σ T
L X X XX Q V ; 

(6). Compute the matrix 
 = = Σ +2exp( ) exp( )T T T T T T T

H M M MJ P A HA P P Q P P Q Q P
 

= = Σ + −2exp( ) exp( )T T T T
X X X X XU P A LA P Q Q I Q Q respectively; 

(7). Solve the eigenvalue problem λ=i i iJu Uu ;      
(8). Let G = PUk where Uk is the matrix combined of k eigenvectors corresponding to k 
largest eigenvalues, and then orthogonalize the projection matrix and get the G we wanted(k 
is a constant value) . 

Then the time complexity is reduced to O( 2rn ). 

4. Experimental results 
In the experiment, we will evaluate the performance of 2D-MELPP with PCA+LPP, 2D-PCA, 
ELPP, 2D-LDA, and 2D-LPP on the random 3D data set and three different public image 
databases. We pick up KNN as the classifier for three image databases. Four experimental results 
are completed in the same experimental environment (CPU: 2.04 GHz, RAM: 3.9GB). 

4.1 The Random 3D data set 
In the first experiment, we will propose 2D-MELPP and other methods on a synthetic 3D matrix 
M. The data set is made up of 20 matrices, each of which is generated by a 20 by 20 matrix 
having 400 points subject to normal distribution. And the data set is divided into 2 class as 
follows(The data set is normalized) :  

 

− ≥

=  − ≤



0.999

( )
0.001

kij

kij
kij

class a A

class A class b A
 (25) 
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where Akij  is value of ith row and jth column of the kth matrix, (0 , , 20i j k≤ ≤ ), ( )class Akij is 

the class of Akij  and the class is either class-a or class-b. The distribution of two classes can be 

seen in Fig. 1. 
 

 
Fig. 1. The class distribution of 3D data set. Each point is represented by( , , )i i jx y z  in 

Cartesian coordinates. Variable i ranges from 0 to 20. Two classes are marked by blue and red 
respectively. Each point is assigned with random values ranging from 0 to 1 and the rules to decide its 

class are shown in (25).  
 

We test PCA+LPP, ELPP, 2D-PCA, 2D-LDA, 2D-LPP and 2D-MELPP on this random data 
set. And FIGURE 2 shows the result of dimension reduction with PCA+LPP, 2D-PCA, ELPP, 
2D-LDA, 2D-LPP and 2D-MELPP (from left to right, up to down). 

 

   
(a) PCA+LPP                             (b) ELPP 
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  (c) 2D-PCA                             (d) 2D-LDA 

  
  (e) 2D-LPP                            (f) 2D-MELPP 

 
Fig. 2. The projected 2D data set with (a) PCA+LPP, (b) ELPP, (c) 2D-PCA, (d) 2D-LDA, (e) 2D-

LPP and (f) 2D-MELPP (from left to right, up to down). The X axis is the reduced dimension, Y is the 
serial number of the picture. 

 
As can be seen from Fig. 2, 2D-MELPP provide projected data with excellent linear 

separability, while other methods fail to do so. 

4.2 The ORL face database 
The ORL face image database consists of 400 face images with 40 classes, each having 10 
samples within. The background were all set in homogeneous darkness, and the images are 
featured by different light intensities, facial expressions and facial details(glassed and not) as it 
can be shown in Fig. 3. 
 

 
Fig. 3. The images of one person from ORL face database 

 
We range dimensions of project vector from 1 to 20 in Table 1 and pick one with highest 

recognition accuracy each(from 2 to 6 training samples each class). Fig. 4 shows recognition 
accuracy varies under 6 samples with the changes of dimensions. In Table 2, we record the time 
cost on each algorithm under 6 samples on the ORL face database. 

 
 
 

http://dict.cn/Linear%20separability
http://dict.cn/Linear%20separability
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Table 1. highest mean value of rECOGNITION ACCURACY (IN PERCENT) ON ORL database. 
There is a one-to-one correspondence between colunms and fixed training numbers. values in each 

PARENTHESIS ranges between 1 and 20, they represent for corresponding projected matrix 
dimensions.  

Algorithm\Train num per class 2 Train 3 Train 4 Train 5 Train 6 Train 
PCA+LPP 62.75(20) 73.75(20) 78.25(20) 83.25(20) 87.25(20) 
ELPP 57.5 (20) 73.25(20) 79.75(20) 84.00(17) 89.25(20) 
2D-PCA 60.63(20) 76.07(20) 76.67(20) 78.00(20) 81.88(20) 
2D-LDA 73.89 (8) 84.38 (2) 90.00 (3) 90.8(10) 93.50(9) 
2D-LPP 71.56 (5) 89.64(17) 85.00(12) 92 (16) 95.00(17) 
2D-MELPP 75.31(11) 91.79(18) 92.92(19) 95.00(16) 98.50 (7) 

 

 
Fig. 4. The recognition accuracy with 6 samples per class on the ORL face database 

 
Table 2. AVERAGE cost time(s) of PCA+LPP, ELPP, 2D-PCA, 2D-LDA, 2D-LPP and 2D-MELPP 
on The ON ORL FACE SET. EACH COLUMN CORRESPONDS TO A FIXED ALGORITHM.And 

THE 2D-MELPP IS THE IMPROVED VERSION. 
Algorithm PCA+LPP ELPP 2D-PCA 2D-LDA 2D-LPP 2D-MELPP 
Time(s) 0.861 1.365 2.343 2.494 0.898 1.303 

 

4.3 The AR face database 

AR face database is made up of face images of 120 people with 26 images of each. In this 
experiment we take 10 each which don’t have too many occlusion problems while testing 
algorithm on a lager scale than ORL in Fig. 5. 
 

 
Fig. 5.  20 image samples of one person form AR database. Pictures in second line  were token 2 

weeks after the first line 
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We range dimensions of project vector from 1 to 20 in Table 3 and pick one with highest 

recognition accuracy each(from 2 to 6 training samples each class). Fig. 6 shows recognition 
accuracy varies under 6 samples per class with the changes of dimensions. 

 
Table 3. highest mean values of rECOGNITION ACCURACY (IN PERCENT) ON Ar database. 

There is a one-to-one correspondence between colunms and fixed training numbers. values in each 
PARENTHESIS ranges between 1 and 20, they represent for corresponding projected matrix 

dimensions.  
Algorithm\Train num per class 2 Train 3 Train 4 Train 5 Train 6 Train 
PCA+LPP 30.42(20) 48(20) 47.17(20) 55.5(20) 65.17(20) 
ELPP 64.5(20) 55.41(19) 56.75(19) 66.75(20) 74.08(20) 
2D-PCA 47.75(20) 55.5(20) 62.58(20) 72.42(20) 79(20) 
2D-LDA 80.83(20) 75.41(19) 75.91(20) 91.67(19) 94.75(2) 
2D-LPP 89.75(20) 86.33(20) 82.16(12) 93.5(17) 96.75(19) 
2D-MELPP 75.67(1) 87.42(2) 87.83(5) 91.75(11) 98.33(7) 

 

 
Fig. 6. The recognition accuracy with 6 samples per class on the AR face database 

 
 In Table 4, we record the time cost on each algorithm under 6 samples on the AR face 

database. 
 

Table 4. AVERAGE cost time(s) of PCA+LPP, ELPP, 2D-PCA, 2D-LDA, 2D-LPP and 2D-MELPP 
on The ON ar FACE SET. EACH COLUMN CORRESPONDS TO A FIXED ALGORITHM.And 

THE 2D-MELPP IS THE IMPROVED VERSION. 
Algorithm PCA+LPP ELPP 2D-PCA 2D-LDA 2D-LPP 2D-MELPP 
Time(s) 4.723 6.686 4.201 4.5385 6.521 6.516 

 

4.4.  The Polyu palmprint database 
Polyu Palmprint Database consists of 600 palmprint image with 100 classes, each having 6 
samples within. Fig. 7 shows the background were also set in homogeneous darkness and the 
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images are featured by different light intensities. Half of the original image is taken 2 month later 
than the other half, and we set the training and testing division according to that. 
 

 

 

 
Fig. 7. The palmprint samples from Polyu palmprint database 

 
Fig. 8 shows recognition accuracy varies under 3 samples with the changes of dimensions 

ranging from 1 to 50, and Table 5 shows highest recognition accuracy of each algorithm, Table 
6 records the time cost with 50 dimensions. 

 
Table 5. highest mean value of rECOGNITION ACCURACY (IN PERCENT) ON polyu database. 

There is a one-to-one correspondence between colunms and methods.  
 

Algorithm PCA+LPP ELPP 2D-PCA 2D-LDA 2D-LPP 2D-
MELPP 

Recognition 
accuracy(%) 87(47) 96.33(48) 73.3(47) 90.33(5) 97(34) 97.33(47) 

 

 
Fig. 8. recognition accuracy with 3 samples per class on Polyu Palmprint database 

 
Table 6. AVERAGE cost time(s) of PCA+LPP, ELPP, 2D-PCA, 2D-LDA, 2D-LPP and 2D-MELPP 
on PolyU palmprint database. EACH COLUMN CORRESPONDS TO A FIXED ALGORITHM.And 

THE 2D-MELPP IS THE IMPROVED VERSION. 
Algorithm PCA+LPP ELPP 2D-PCA 2D-LDA 2D-LPP 2D-MELPP 
Time(s) 1.521 7.77 2.377 2.903 7.474 7.680 
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From results of the experiment above, we can make observations： 
(1). According to Fig.s 2, 4 and 6, provided with identical experimental conditions, the 
recognition accuracy of the advanced algorithm has better performances. The ability of the 
algorithm to preserve more discrimination than others may account for it. 
(2). Generally, 2D-MELPP achieves higher recognition accuracy than other algorithms with 
small projection dimensions as shown in Table 1, 3, 5. 
(3). 2D-MELPP takes less time than ELPP in tree databases, which provides supports for our 
development on computational complexities does reduce the it. It can be seen from Table 2, 4, 
6. 

5. Conclusion 

5.1.  Results and advanced nature of experiments  
We are inspired by the idea of ELPP and comparison works between 2D-LDA and LDA to 
employee matrix exponential on 2D-LPP and work algebra procedure to promote its behavior 
both in theory and in test on random 3D data set, two public face databases and one palmprint 
database. We also develop a way to save memory cost for solving 2D-MELPP. Our advanced 
2D-MELPP performs better in recognition accuracy and it cost less time than ELPP. 
2D-MELPP is an efficient solution for the SSS problem elegantly since the matrix exponential 
of a symmetric matrix is positive definite all the time. Since 2D-MELPP is based directly on 
image matrix and the matrix exponential process has distances enlarged, it can preserve more 
information and achieve higher accuracy. 

5.2.  Spectrum of future work 
Although it’s easy to apply linear methods for dimensionality reduction, it’s nonetheless hard to 
attain linear data in real world feature extraction application. In view of above-mentioned reason, 
improvements can be made with nolinear methods or struct based methods. We will verify them 
in future work. 
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